36 research outputs found

    Deep Image Matting: A Comprehensive Survey

    Full text link
    Image matting refers to extracting precise alpha matte from natural images, and it plays a critical role in various downstream applications, such as image editing. Despite being an ill-posed problem, traditional methods have been trying to solve it for decades. The emergence of deep learning has revolutionized the field of image matting and given birth to multiple new techniques, including automatic, interactive, and referring image matting. This paper presents a comprehensive review of recent advancements in image matting in the era of deep learning. We focus on two fundamental sub-tasks: auxiliary input-based image matting, which involves user-defined input to predict the alpha matte, and automatic image matting, which generates results without any manual intervention. We systematically review the existing methods for these two tasks according to their task settings and network structures and provide a summary of their advantages and disadvantages. Furthermore, we introduce the commonly used image matting datasets and evaluate the performance of representative matting methods both quantitatively and qualitatively. Finally, we discuss relevant applications of image matting and highlight existing challenges and potential opportunities for future research. We also maintain a public repository to track the rapid development of deep image matting at https://github.com/JizhiziLi/matting-survey

    Towards Generalizable Deep Image Matting: Decomposition, Interaction, and Merging

    Get PDF
    Image matting refers to extracting the precise alpha mattes from images, playing a critical role in many downstream applications. Despite extensive attention, key challenges persist and motivate the research presented in this thesis. One major challenge is the reliance of auxiliary inputs in previous methods, hindering real-time practicality. To address this, we introduce fully automatic image matting by decomposing the task into high-level semantic segmentation and low-level details matting. We then incorporate plug-in modules to enhance the interaction between the sub-tasks through feature integration. Furthermore, we propose an attention-based mechanism to guide the matting process through collaboration merging. Another challenge lies in limited matting datasets, resulting in reliance on composite images and inferior performance on images in the wild. In response, our research proposes a composition route to mitigate the discrepancies and result in remarkable generalization ability. Additionally, we construct numerous large datasets of high-quality real-world images with manually labeled alpha mattes, providing a solid foundation for training and evaluation. Moreover, our research uncovers new observations that warrant further investigation. Firstly, we systematically analyze and address privacy issues that have been neglected in previous portrait matting research. Secondly, we explore the adaptation of automatic matting methods to non-salient or transparent categories beyond salient ones. Furthermore, we collaborate with language modality to achieve a more controllable matting process, enabling specific target selection at a low cost. To validate our studies, we conduct extensive experiments and provide all codes and datasets through the link (https://github.com/JizhiziLi/). We believe that the analyses, methods, and datasets presented in this thesis will offer valuable insights for future research endeavors in the field of image matting

    Segmentation of motion picture images and image sequences

    Get PDF

    ON NEURAL ARCHITECTURES FOR SEGMENTATION IN NATURAL AND MEDICAL IMAGES

    Get PDF
    Segmentation is an important research field in computer vision. It requires recognizing and segmenting the objects at the pixel level. In the past decade, many deep neural networks have been proposed, which have been central to the development in this area. These frameworks have demonstrated human-level or beyond performance on many challenging benchmarks, and have been widely used in many real-life applications, including surveillance, autonomous driving, and medical image analysis. However, it is non-trivial to design neural architectures with both efficiency and effectiveness, especially when they need to be tailored to the target tasks and datasets. In this dissertation, I will present our research works in this area from the following aspects. (i) To enable automatic neural architecture design on the costly 3D medical image segmentation, we propose an efficient and effective neural architecture search algorithm that tackles the problem in a coarse-to-fine manner. (ii) To further take advantage of the neural architecture search, we propose to search for a channel-level replacement for 3D networks, which leads to strong alternatives to 3D networks. (iii) To perform segmentation with great detail, we design a coarse-to-fine segmentation framework for matting-level segmentation; (iv) To provide stronger features for segmentation, we propose a stronger transformer-based backbone that can work on dense tasks. (v) To better resolve the panoptic segmentation problem in an end-to-end manner, we propose to combine transformers with the traditional clustering algorithm, which leads to a more intuitive segmentation framework with better performance
    corecore