1,172 research outputs found

    Security of the Internet of Things: Vulnerabilities, Attacks and Countermeasures

    Get PDF
    Wireless Sensor Networks (WSNs) constitute one of the most promising third-millennium technologies and have wide range of applications in our surrounding environment. The reason behind the vast adoption of WSNs in various applications is that they have tremendously appealing features, e.g., low production cost, low installation cost, unattended network operation, autonomous and longtime operation. WSNs have started to merge with the Internet of Things (IoT) through the introduction of Internet access capability in sensor nodes and sensing ability in Internet-connected devices. Thereby, the IoT is providing access to huge amount of data, collected by the WSNs, over the Internet. Hence, the security of IoT should start with foremost securing WSNs ahead of the other components. However, owing to the absence of a physical line-of-defense, i.e., there is no dedicated infrastructure such as gateways to watch and observe the flowing information in the network, security of WSNs along with IoT is of a big concern to the scientific community. More specifically, for the application areas in which CIA (confidentiality, integrity, availability) has prime importance, WSNs and emerging IoT technology might constitute an open avenue for the attackers. Besides, recent integration and collaboration of WSNs with IoT will open new challenges and problems in terms of security. Hence, this would be a nightmare for the individuals using these systems as well as the security administrators who are managing those networks. Therefore, a detailed review of security attacks towards WSNs and IoT, along with the techniques for prevention, detection, and mitigation of those attacks are provided in this paper. In this text, attacks are categorized and treated into mainly two parts, most or all types of attacks towards WSNs and IoT are investigated under that umbrella: “Passive Attacks” and “Active Attacks”. Understanding these attacks and their associated defense mechanisms will help paving a secure path towards the proliferation and public acceptance of IoT technology

    Energy-aware and adaptive fog storage mechanism with data replication ruled by spatio-temporal content popularity

    Get PDF
    Data traffic demand increases at a very fast pace in edge networking environments, with strict requisites on latency and throughput. To fulfil these requirements, among others, this paper proposes a fog storage system that incorporates mobile nodes as content providers. This fog storage system has a hybrid design because it does not only bring data closer to edge consumers but, as a novelty, it also incorporates in the system other relevant functional aspects. These novel aspects are the user data demand, the energy consumption, and the node distance. In this way, the decision whether to replicate data is based on an original edge service managed by an adaptive distance metric for node clustering. The adaptive distance is evaluated from several important system parameters like, distance from consumer to the data storage location, spatio-temporal data popularity, and the autonomy of each battery-powered node. Testbed results evidence that this flexible cluster-based proposal offers a more responsive data access to consumers, reduces core traffic, and depletes in a fair way the available battery energy of edge nodes.info:eu-repo/semantics/acceptedVersio

    ETL and analysis of IoT data using OpenTSDB, Kafka, and Spark

    Get PDF
    Master's thesis in Computer scienceThe Internet of Things (IoT) is becoming increasingly prevalent in today's society. Innovations in storage and processing methodologies enable the processing of large amounts of data in a scalable manner, and generation of insights in near real-time. Data from IoT are typically time-series data but they may also have a strong spatial correlation. In addition, many time-series data are deployed in industries that still place the data in inappropriate relational databases. Many open-source time-series databases exist today with inspiring features in terms of storage, analytic representation, and visualization. Finding an efficient method to migrate data into a time-series database is the first objective of the thesis. In recent decades, machine learning has become one of the backbones of data innovation. With the constantly expanding amounts of information available, there is good reason to expect that smart data analysis will become more pervasive as an essential element for innovative progress. Methods for modeling time-series data in machine learning and migrating time-series data from a database to a big data machine learning framework, such as Apache Spark, is explored in this thesis

    Mr.Wolf: An Energy-Precision Scalable Parallel Ultra Low Power SoC for IoT Edge Processing

    Get PDF
    This paper presents Mr. Wolf, a parallel ultra-low power (PULP) system on chip (SoC) featuring a hierarchical architecture with a small (12 kgates) microcontroller (MCU) class RISC-V core augmented with an autonomous IO subsystem for efficient data transfer from a wide set of peripherals. The small core can offload compute-intensive kernels to an eight-core floating-point capable of processing engine available on demand. The proposed SoC, implemented in a 40-nm LP CMOS technology, features a 108-mu W fully retentive memory (512 kB). The IO subsystem is capable of transferring up to 1.6 Gbit/s from external devices to the memory in less than 2.5 mW. The eight-core compute cluster achieves a peak performance of 850 million of 32-bit integer multiply and accumulate per second (MMAC/s) and 500 million of 32-bit floating-point multiply and accumulate per second (MFMAC/s) -1 GFlop/s-with an energy efficiency up to 15 MMAC/s/mW and 9 MFMAC/s/mW. These building blocks are supported by aggressive on-chip power conversion and management, enabling energy-proportional heterogeneous computing for always-on IoT end nodes improving performance by several orders of magnitude with respect to traditional single-core MCUs within a power envelope of 153 mW. We demonstrated the capabilities of the proposed SoC on a wide set of near-sensor processing kernels showing that Mr. Wolf can deliver performance up to 16.4 GOp/s with energy efficiency up to 274 MOp/s/mW on real-life applications, paving the way for always-on data analytics on high-bandwidth sensors at the edge of the Internet of Things

    Implementation of Collaborative E-learning System for Unstable Environment

    Get PDF
    We design a collaborative e-learning system for stable operation in an unstable environment of developing countries. The proposed system is used for providing a collaborative learning among local schools of rural area in Nepal. The stable operation of the system is realized by the redundant robustness in three different levels: network arrangement, energy management, and replicative database. In this paper, we present an overall design of the system and its use case. Then, methods adopted for achieving the redundancy in each level are described

    High availability of data using Automatic Selection Algorithm (ASA) in distributed stream processing systems

    Get PDF
    High Availability of data is one of the most critical requirements of a distributed stream processing systems (DSPS). We can achieve high availability using available recovering techniques, which include (active backup, passive backup and upstream backup). Each recovery technique has its own advantages and disadvantages. They are used for different type of failures based on the type and the nature of the failures. This paper presents an Automatic Selection Algorithm (ASA) which will help in selecting the best recovery techniques based on the type of failures. We intend to use together all different recovery approaches available (i.e., active standby, passive standby, and upstream standby) at nodes in a distributed stream-processing system (DSPS) based upon the system requirements and a failure type). By doing this, we will achieve all benefits of fastest recovery, precise recovery and a lower runtime overhead in a single solution. We evaluate our automatic selection algorithm (ASA) approach as an algorithm selector during the runtime of stream processing. Moreover, we also evaluated its efficiency in comparison with the time factor. The experimental results show that our approach is 95% efficient and fast than other conventional manual failure recovery approaches and is hence totally automatic in nature

    Activity Report 2021 : Automatic Control, Lund University

    Get PDF

    Security Services Using Blockchains: A State of the Art Survey

    Get PDF
    This article surveys blockchain-based approaches for several security services. These services include authentication, confidentiality, privacy and access control list (ACL), data and resource provenance, and integrity assurance. All these services are critical for the current distributed applications, especially due to the large amount of data being processed over the networks and the use of cloud computing. Authentication ensures that the user is who he/she claims to be. Confidentiality guarantees that data cannot be read by unauthorized users. Privacy provides the users the ability to control who can access their data. Provenance allows an efficient tracking of the data and resources along with their ownership and utilization over the network. Integrity helps in verifying that the data has not been modified or altered. These services are currently managed by centralized controllers, for example, a certificate authority. Therefore, the services are prone to attacks on the centralized controller. On the other hand, blockchain is a secured and distributed ledger that can help resolve many of the problems with centralization. The objectives of this paper are to give insights on the use of security services for current applications, to highlight the state of the art techniques that are currently used to provide these services, to describe their challenges, and to discuss how the blockchain technology can resolve these challenges. Further, several blockchain-based approaches providing such security services are compared thoroughly. Challenges associated with using blockchain-based security services are also discussed to spur further research in this area
    • …
    corecore