31,269 research outputs found

    Kernel Spectral Curvature Clustering (KSCC)

    Full text link
    Multi-manifold modeling is increasingly used in segmentation and data representation tasks in computer vision and related fields. While the general problem, modeling data by mixtures of manifolds, is very challenging, several approaches exist for modeling data by mixtures of affine subspaces (which is often referred to as hybrid linear modeling). We translate some important instances of multi-manifold modeling to hybrid linear modeling in embedded spaces, without explicitly performing the embedding but applying the kernel trick. The resulting algorithm, Kernel Spectral Curvature Clustering, uses kernels at two levels - both as an implicit embedding method to linearize nonflat manifolds and as a principled method to convert a multiway affinity problem into a spectral clustering one. We demonstrate the effectiveness of the method by comparing it with other state-of-the-art methods on both synthetic data and a real-world problem of segmenting multiple motions from two perspective camera views.Comment: accepted to 2009 ICCV Workshop on Dynamical Visio

    Matching Image Sets via Adaptive Multi Convex Hull

    Get PDF
    Traditional nearest points methods use all the samples in an image set to construct a single convex or affine hull model for classification. However, strong artificial features and noisy data may be generated from combinations of training samples when significant intra-class variations and/or noise occur in the image set. Existing multi-model approaches extract local models by clustering each image set individually only once, with fixed clusters used for matching with various image sets. This may not be optimal for discrimination, as undesirable environmental conditions (eg. illumination and pose variations) may result in the two closest clusters representing different characteristics of an object (eg. frontal face being compared to non-frontal face). To address the above problem, we propose a novel approach to enhance nearest points based methods by integrating affine/convex hull classification with an adapted multi-model approach. We first extract multiple local convex hulls from a query image set via maximum margin clustering to diminish the artificial variations and constrain the noise in local convex hulls. We then propose adaptive reference clustering (ARC) to constrain the clustering of each gallery image set by forcing the clusters to have resemblance to the clusters in the query image set. By applying ARC, noisy clusters in the query set can be discarded. Experiments on Honda, MoBo and ETH-80 datasets show that the proposed method outperforms single model approaches and other recent techniques, such as Sparse Approximated Nearest Points, Mutual Subspace Method and Manifold Discriminant Analysis.Comment: IEEE Winter Conference on Applications of Computer Vision (WACV), 201
    • …
    corecore