35 research outputs found

    Passive Variable Compliance for Dynamic Legged Robots

    Get PDF
    Recent developments in legged robotics have found that constant stiffness passive compliant legs are an effective mechanism for enabling dynamic locomotion. In spite of its success, one of the limitations of this approach is reduced adaptability. The final leg mechanism usually performs optimally for a small range of conditions such as the desired speed, payload, and terrain. For many situations in which a small locomotion system experiences a change in any of these conditions, it is desirable to have a tunable stiffness leg for effective gait control. To date, the mechanical complexities of designing usefully robust tunable passive compliance into legs has precluded their implementation on practical running robots. In this thesis we present an overview of tunable stiffness legs, and introduce a simple leg model that captures the spatial compliance of our tunable leg. We present experimental evidence supporting the advantages of tunable stiffness legs, and implement what we believe is the first autonomous dynamic legged robot capable of automatic leg stiffness adjustment. Finally we discuss design objectives, material considerations, and manufacturing methods that lead to robust passive compliant legs

    Non-inertial Undulatory Locomotion Across Scales

    Get PDF
    Locomotion is crucial to behaviors such as predator avoidance, foraging, and mating. In particular, undulatory locomotion is one of the most common forms of locomotion. From microscopic flagellates to swimming fish and slithering snakes, this form of locomotion is a remarkably robust self-propulsion strategy that allows a diversity of organisms to navigate myriad environments. While often thought of as exclusive to limbless organisms, a variety of locomotors possessing few to many appendages rely on waves of undulation for locomotion. In inertial regimes, organisms can leverage the forces generated by their body and the surrounding medium's inertia to enhance their locomotion (e.g., coast or glide). On the other hand, in non-inertial regimes self-propulsion is dominated by damping (viscous or frictional), and thus the ability for organisms to generate motion is dependent on the sequence of internal shape changes. In this thesis, we study a variety of undulating systems that locomote in highly damped regimes. We perform studies on systems ranging from zero to many appendages. Specifically, we focus on four distinct undulatory systems: 1) C. elegans, 2) quadriflagellate algae (bearing four flagella), 3) centipedes on terrestrial environments, and 4) centipedes on fluid environments. For each of these systems, we study how the coordination of their many degrees of freedom leads to specific locomotive behaviors. Further, we propose hypotheses for the observed behaviors in the context of each of these system's ecology.Ph.D

    Snake and Snake Robot Locomotion in Complex, 3-D Terrain

    Get PDF
    Snakes are able to traverse almost all types of environments by bending their elongate bodies in three dimensions to interact with the terrain. Similarly, a snake robot is a promising platform to perform critical tasks in various environments. Understanding how 3-D body bending effectively interacts with the terrain for propulsion and stability can not only inform how snakes move through natural environments, but also inspire snake robots to achieve similar performance to facilitate humans. How snakes and snake robots move on flat surfaces has been understood relatively well in previous studies. However, such ideal terrain is rare in natural environments and little was understood about how to generate propulsion and maintain stability when large height variations occur, except for some qualitative descriptions of arboreal snake locomotion and a few robots using geometric planning. To bridge this knowledge gap, in this dissertation research we integrated animal experiments and robotic studies in three representative environments: a large smooth step, an uneven arena of blocks of large height variation, and large bumps. We discovered that vertical body bending induces stability challenges but can generate large propulsion. When traversing a large smooth step, a snake robot is challenged by roll instability that increases with larger vertical body bending because of a higher center of mass. The instability can be reduced by body compliance that statistically increases surface contact. Despite the stability challenge, vertical body bending can potentially allow snakes to push against terrain for propulsion similar to lateral body bending, as demonstrated by corn snakes traversing an uneven arena. This ability to generate large propulsion was confirmed on a robot if body-terrain contact is well maintained. Contact feedback control can help the strategy accommodate perturbations such as novel terrain geometry or excessive external forces by helping the body regain lost contact. Our findings provide insights into how snakes and snake robots can use vertical body bending for efficient and versatile traversal of the three-dimensional world while maintaining stability

    Formation Control of Underactuated Bio-inspired Snake Robots

    Get PDF
    This paper considers formation control of snake robots. In particular, based on a simplified locomotion model, and using the method of virtual holonomic constraints, we control the body shape of the robot to a desired gait pattern defined by some pre-specified constraint functions. These functions are dynamic in that they depend on the state variables of two compensators which are used to control the orientation and planar position of the robot, making this a dynamic maneuvering control strategy. Furthermore, using a formation control strategy we make the multi-agent system converge to and keep a desired geometric formation, and enforce the formation follow a desired straight line path with a given speed profile. Specifically, we use the proposed maneuvering controller to solve the formation control problem for a group of snake robots by synchronizing the commanded velocities of the robots. Simulation results are presented which illustrate the successful performance of the theoretical approach.© ISAROB 2016. This is the authors' accepted and refereed manuscript to the article. Locked until 2017-07-27

    Locomotion through morphology, evolution and learning for legged and limbless robots

    Get PDF
    Mención Internacional en el título de doctorRobot locomotion is concerned with providing autonomous locomotion capabilities to mobile robots. Most current day robots feature some form of locomotion for navigating in their environment. Modalities of robot locomotion includes: (i) aerial locomotion, (ii) terrestrial locomotion, and (iii) aquatic locomotion (on or under water). Three main forms of terrestrial locomotion are, legged locomotion, limbless locomotion and wheel-based locomotion. A Modular Robot (MR), on the other hand, is a robotic system composed of several independent unit modules, where, each module is a robot by itself. The objective in this thesis is to develop legged locomotion in a humanoid robot, as well as, limbless locomotion in modular robotic configurations. Taking inspiration from biology, robot locomotion from the perspective of robot’s morphology, through evolution, and through learning are investigated in this thesis. Locomotion is one of the key distinguishing characteristics of a zoological organism. Almost all animal species, and even some plant species, produce some form of locomotion. In the past few years, robots have been “moving out” of the factory floor and research labs, and are becoming increasingly common in everyday life. So, providing stable and agile locomotion capabilities for robots to navigate a wide range of environments becomes pivotal. Developing locomotion in robots through biologically inspired methods, also facilitates furthering our understanding on how biological processes may function. Connected modules in a configuration, exert force on each other as a result of interaction between each other and their environment. This phenomenon is studied and quantified, and then used as implicit communication between robot modules for producing locomotion coordination in MRs. Through this, a strong link between robot morphology and the gait that emerge in it is established. A variety of locomotion controller, some periodic-function based and some morphology based, are developed for MR locomotion and bipedal gait generation. A hybrid Evolutionary Algorithm (EA) is implemented for evolving gaits, both in simulation as well as in the real-world on a physical modular robotic configuration. Limbless gaits in MRs are also learnt by learning optimal control policies, through Reinforcement Learning (RL).En robótica, la locomoción trata de proporcionar capacidades de locomoción autónoma a robots móviles. La mayoría de los robots actuales tiene alguna forma de locomoción para navegar en su entorno. Los modos de locomoción robótica se pueden repartir entre: (i) locomoción aérea, (ii) locomoción terrestre, y (iii) locomoción acuática (sobre o bajo el agua). Las tres formas básicas de locomoción terrestre son la locomoción mediante piernas, la locomoción sin miembros, y la locomoción basada en ruedas. Un Robot Modular, por otra parte, es un sistema robótico compuesto por varios módulos independientes, donde cada módulo es un robot en sí mismo. El objetivo de esta tesis es el desarrollo de la locomoción mediante piernas para un robot humanoide, así como el de la locomoción sin miembros para varias configuraciones de robots modulares. Inspirándose en la biología, también se investiga en esta tesis el desarrollo de la locomoción del robot según su morfología, gracias a técnicas de evolución y de aprendizaje. La locomoción es una de las características distintivas de un organismo zoológico. Casi todas las especies animales, e incluso algunas especies de plantas, poseen algún tipo de locomoción. En los últimos años, los robots han “migrado” desde las fábricas y los laboratorios de investigación, y se están integrando cada vez más en nuestra vida diaria. Por estas razones, es crucial proporcionar capacidades de locomoción estables y ágiles a los robots para que puedan navegar por todo tipo de entornos. El uso de métodos de inspiración biológica para alcanzar esta meta también nos ayuda a entender mejor cómo pueden funcionar los procesos biológicos equivalentes. En una configuración de módulos conectados, puesto que cada uno interacciona con su entorno, los módulos ejercen fuerza los unos sobre los otros. Este fenómeno se ha estudiado y cuantificado, y luego se ha usado como comunicación implícita entre los módulos para producir la coordinación en la locomoción de este robot. De esta manera, se establece un fuerte vínculo entre la morfología de un robot y el modo de andar que este desarrolla. Se han desarrollado varios controladores de locomoción para robots modulares y robots bípedos, algunos basados en funciones periódicas, otros en la morfología del robot. Un algoritmo evolutivo híbrido se ha implementado para la evolución de locomociones, tanto en simulación como en el mundo real en una configuración física de robot modular. También se pueden generar locomociones sin miembros para robots modulares, determinando las políticas de control óptimo gracias a técnicas de aprendizaje por refuerzo. Se presenta en primer lugar en esta tesis el estado del arte de la robótica modular, enfocándose en la locomoción de robots modulares, los controladores, la locomoción bípeda y la computación morfológica. A continuación se describen cinco configuraciones diferentes de robot modular que se utilizan en esta tesis, seguido de cuatro controladores de locomoción. Estos controladores son el controlador heterogéneo, el controlador basado en funciones periódicas, el controlador homogéneo y el controlador basado en la morfología del robot. Se desarrolla como parte de este trabajo un controlador de locomoción lineal, periódico, basado en features, para la locomoción bípeda de robots humanoides. Los parámetros de control se ajustan primero a mano para reproducir un modelo cart-table, y el controlador se evalúa en un robot humanoide simulado. A continuación, gracias a un algoritmo evolutivo, la optimización de los parámetros de control permite desarrollar una locomoción sin modelo predeterminado. Se desarrolla como parte de esta tesis un enfoque sobre algoritmos de Embodied Evolución, en otras palabras el uso de robots modulares físicos en la fase de evolución. La implementación material, la configuración experimental, y el Algoritmo Evolutivo implementado para Embodied Evolución, se explican detalladamente. El trabajo también incluye una visión general de las técnicas de aprendizaje por refuerzo y de los Procesos de Decisión de Markov. A continuación se presenta un algoritmo popular de aprendizaje por refuerzo, llamado Q-Learning, y su adaptación para aprender locomociones de robots modulares. Se proporcionan una implementación del algoritmo de aprendizaje y la evaluación experimental de la locomoción generada.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Antonio Barrientos Cruz.- Secretario: Luis Santiago Garrido Bullón.- Vocal: Giuseppe Carbon

    Novel Locomotion Methods in Magnetic Actuation and Pipe Inspection

    Get PDF
    There is much room for improvement in tube network inspections of jet aircraft. Often, these inspections are incomplete and inconsistent. In this paper, we develop a Modular Robotic Inspection System (MoRIS) for jet aircraft tube networks and a corresponding kinematic model. MoRIS consists of a Base Station for user control and communication, and robotic Vertebrae for accessing and inspecting the network. The presented and tested design of MoRIS can travel up to 9 feet in a tube network. The Vertebrae can navigate in all orientations, including smooth vertical tubes. The design is optimized for nominal 1.5 outside diameter tubes. We developed a model of the Locomotion Vertebra in a tube. We defined the model\u27s coordinate system and its generalized coordinates. We studied the configuration space of the robot, which includes all possible orientations of the Locomotion Vertebra. We derived the expression for the elastic potential energy of the Vertebra\u27s suspensions and minimized it to find the natural settling orientation of the robot. We further explore the effect of the tractive wheel\u27s velocity constraint on locomotion dynamics. Finally, we develop a general model for aircraft tube networks and for a taut tether. Stabilizing bipedal walkers is a engineering target throughout the research community. In this paper, we develop an impulsively actuated walking robot. Through the use of magnetic actuation, for the first time, pure impulsive actuation has been achieved in bipedal walkers. In studying this locomotion technique, we built the world\u27s smallest walker: Big Foot. A dynamical model was developed for Big Foot. A Heel Strike and a Constant Pulse Wave Actuation Schemes were selected for testing. The schemes were validated through simulations and experiments. We showed that there exists two regimes for impulsive actuation. There is a regime for impact-like actuation and a regime for longer duration impulsive actuation

    Modulation of Robot Orientation via Leg-Obstacle Contact Positions

    Get PDF
    We study a quadrupedal robot traversing a structured (i.e., periodically spaced) obstacle field driven by an open-loop quasi-static trotting walk. Despite complex, repeated collisions and slippage between robot legs and obstacles, the robot’s horizontal plane body orientation (yaw) trajectory can converge in the absence of any body level feedback to stable steady state patterns. We classify these patterns into a series of “types” ranging from stable locked equilibria, to stable periodic oscillations, to unstable or mixed period oscillations. We observe that the stable equilibria can bifurcate to stable periodic oscillations and then to mixed period oscillations as the obstacle spacing is gradually increased. Using a 3D-reconstruction method, we experimentally characterize the robot leg-obstacle contact configurations at each step to show that the different steady patterns in robot orientation trajectories result from a self-stabilizing periodic pattern of leg-obstacle contact positions. We present a highly-simplified coupled oscillator model that predicts robot orientation pattern as a function of the leg-obstacle contact mechanism. We demonstrate that the model successfully captures the robot steady state for different obstacle spacing and robot initial conditions. We suggest in simulation that using the simplified coupled oscillator model we can create novel control strategies that allow multi-legged robots to exploit obstacle disturbances to negotiate randomly cluttered environments. For more information: Kod*lab (link to kodlab.seas.upenn.edu
    corecore