1,094 research outputs found

    A Snake-Inspired Multi-Segmented Magnetic Soft Robot Towards Medical Applications

    Get PDF
    Magnetically-actuated soft robots have potential for medical application but require further innovation on functionality and biocompatibility. In this letter, a multi-segmented snake-inspired soft robot with dissolvable and hiocompatible segments is designed. The actuation response under external magnetic field is investigated through simulations and experiments. A dissolve-controllable mixture of gelatin, glycerol and water (GGW) in a mass ratio of 1:5:6 is used to form the structure of the robot. The dissolution of GGW in water and mucus is tested. Magnetic cubes made of silicone rubber mixed with ferromagnetic particles are used to achieve snake-like motion under the influence of a rotating magnetic field. The motion of the robot is tested under different magnitudes and frequencies of the magnetic field. The ability of the robot to navigate obstacles, move over ground and under water as well as on the oil-coated surface, dissolve and release a drug is demonstrated through experiments. The combination of multi-segmented design and biocompatible and dissolvable materials illustrates the potential of such robots for medical applications

    Real-Time Pose Esti ation and Obstacle Avoidance for Multi-segment Continuum Manipulator in Dynamic Environments

    Get PDF
    In this paper, we present a novel pose estimation and obstacle avoidance approach for tendon-driven multi-segment continuum manipulators moving in dynamic environments. A novel multi-stage implementation of an Extended Kalman Filter is used to estimate the pose of every point along the manipulator's body using only the position information of each segment tip. Combined with a potential field, the overall algorithm will guide the manipulator tip to a desired target location and, at the same time, keep the manipulator body safe from collisions with obstacles. The results show that the approach works well in a real-time simulation environment that contains moving obstacles in the vicinity of the manipulator

    Automatic IVUS segmentation of atherosclerotic plaque with Stop & Go snake

    Get PDF
    Since the upturn of intravascular ultrasound (IVUS)as an imaging technique for the coronary artery system, much research has been done to simplify the complicated analysis of the resulting images. In this study, an attempt to develop an automatic tissue characterization algorithm for IVUS images was done. We concentrated on the segmentation of calcium and soft plaque, because these structures predict the extension and the vulnerability of the atherosclerotic disease, respectively. The first step in the procedure was the extraction of texture features like local binary patterns, co-occurrence matrices and Gabor filter banks. After dimensionality reduction, the resulting feature space was used for classification, constructing a likelihood map to represent different coronary plaques. The information in this map was organized using a recently developed geodesic snake formulation,the so-called Stop & Go snake. The novelty of our study lies in this last step, as it was the first time to apply the Stop & Go snake to segment IVUS images

    Space-Capable Long and Thin Continuum Robotic Cable

    Get PDF
    Design of continuum robots, i.e. robots with continuous backbones, has been an active area of research in robotics for minimally invasive surgery, search and rescue, object manipulation, etc. Along the same lines, NASA developed Tendril , the first long and thin continuum robot of its kind, intended for in-space inspection applications. The thesis starts with describing and discussing the key disadvantages of the current state of the art mechanical design of Tendril\u27\u27 producing undesirable effects during operation. It then includes the design specifics of a novel concept for construction of a next generation long and thin, space-cable, multi-section, continuum cable-like robot, with a modified mechanical design for better performance. The new design possesses key features including controllable bending along its entire length, local compression and a compact actuation package. This new design is detailed in two versions. The first is a planar variant (suited for a 2D workspace), explaining the principle which allows the cable robot to achieve the above mentioned features. It is followed by a refined spatial version (suited for 3D workspace), where the functional characteristics are achieved within the desired aspect ratio of thin (less than 1 cm diameter) and relatively longer length (more than 100 cm) of the robotic cable. A new forward kinematic model is then developed extending the established models for constant-curvature continuum robots, to account for the new design feature of controllable compression (in the hardware) and is validated by performing experiments with the robot in (2D) planar and (3D) spatial scenarios. This new model is found to be effective as a baseline to predict the performance of such a long and thin continuum cable\u27\u27 robot

    New actuators and their applications: from nano actuators to mega actuators

    Get PDF
    The present report describes R&#38;D activities on new actuators undertaken at our laboratory at Okayama University for the past three years. These activities include various types of actuators, such as electromagnetic, electrostatic, piezoelectric, pneumatic, and hydraulic actuators, ranging in size and force from the nano to the mega range. These actuators are described in four categories: microactuators, power, intelligence, and novel principle.</p

    The biomechanical structure of the seahorse tail as a source of inspiration for industrial design

    Get PDF
    • …
    corecore