2,633 research outputs found

    An Efficient Distribution of Labor in a Two Stage Robust Interpretation Process

    Full text link
    Although Minimum Distance Parsing (MDP) offers a theoretically attractive solution to the problem of extragrammaticality, it is often computationally infeasible in large scale practical applications. In this paper we present an alternative approach where the labor is distributed between a more restrictive partial parser and a repair module. Though two stage approaches have grown in popularity in recent years because of their efficiency, they have done so at the cost of requiring hand coded repair heuristics. In contrast, our two stage approach does not require any hand coded knowledge sources dedicated to repair, thus making it possible to achieve a similar run time advantage over MDP without losing the quality of domain independence.Comment: 9 pages, 1 Postscript figure, uses aclap.sty and psfig.tex, In Proceedings of EMNLP 199

    Consecutive Decoding for Speech-to-text Translation

    Full text link
    Speech-to-text translation (ST), which directly translates the source language speech to the target language text, has attracted intensive attention recently. However, the combination of speech recognition and machine translation in a single model poses a heavy burden on the direct cross-modal cross-lingual mapping. To reduce the learning difficulty, we propose COnSecutive Transcription and Translation (COSTT), an integral approach for speech-to-text translation. The key idea is to generate source transcript and target translation text with a single decoder. It benefits the model training so that additional large parallel text corpus can be fully exploited to enhance the speech translation training. Our method is verified on three mainstream datasets, including Augmented LibriSpeech English-French dataset, TED English-German dataset, and TED English-Chinese dataset. Experiments show that our proposed COSTT outperforms the previous state-of-the-art methods. The code is available at https://github.com/dqqcasia/st.Comment: Accepted by AAAI 2021. arXiv admin note: text overlap with arXiv:2009.0970

    Innovative technologies for under-resourced language documentation: The BULB Project

    Get PDF
    International audienceThe project Breaking the Unwritten Language Barrier (BULB), which brings together linguists and computer scientists, aims at supporting linguists in documenting unwritten languages. In order to achieve this we will develop tools tailored to the needs of documentary linguists by building upon technology and expertise from the area of natural language processing, most prominently automatic speech recognition and machine translation. As a development and test bed for this we have chosen three less-resourced African languages from the Bantu family: Basaa, Myene and Embosi. Work within the project is divided into three main steps: 1) Collection of a large corpus of speech (100h per language) at a reasonable cost. After initial recording, the data is re-spoken by a reference speaker to enhance the signal quality and orally translated into French. 2) Automatic transcription of the Bantu languages at phoneme level and the French translation at word level. The recognized Bantu phonemes and French words will then be automatically aligned. 3) Tool development. In close cooperation and discussion with the linguists, the speech and language technologists will design and implement tools that will support the linguists in their work, taking into account the linguists' needs and technology's capabilities. The data collection has begun for the three languages. For this we use standard mobile devices and a dedicated software—LIG-AIKUMA, which proposes a range of different speech collection modes (recording, respeaking, translation and elicitation). LIG-AIKUMA 's improved features include a smart generation and handling of speaker metadata as well as respeaking and parallel audio data mapping

    Innovative technologies for under-resourced language documentation: The BULB Project

    No full text
    International audienceThe project Breaking the Unwritten Language Barrier (BULB), which brings together linguists and computer scientists, aims at supporting linguists in documenting unwritten languages. In order to achieve this we will develop tools tailored to the needs of documentary linguists by building upon technology and expertise from the area of natural language processing, most prominently automatic speech recognition and machine translation. As a development and test bed for this we have chosen three less-resourced African languages from the Bantu family: Basaa, Myene and Embosi. Work within the project is divided into three main steps: 1) Collection of a large corpus of speech (100h per language) at a reasonable cost. After initial recording, the data is re-spoken by a reference speaker to enhance the signal quality and orally translated into French. 2) Automatic transcription of the Bantu languages at phoneme level and the French translation at word level. The recognized Bantu phonemes and French words will then be automatically aligned. 3) Tool development. In close cooperation and discussion with the linguists, the speech and language technologists will design and implement tools that will support the linguists in their work, taking into account the linguists' needs and technology's capabilities. The data collection has begun for the three languages. For this we use standard mobile devices and a dedicated software—LIG-AIKUMA, which proposes a range of different speech collection modes (recording, respeaking, translation and elicitation). LIG-AIKUMA 's improved features include a smart generation and handling of speaker metadata as well as respeaking and parallel audio data mapping

    Cross-Lingual Cross-Media Content Linking: Annotations and Joint Representations

    Get PDF
    Dagstuhl Seminar 15201 was conducted on “Cross-Lingual Cross-Media Content Linking: Annotations and Joint Representations”. Participants from around the world participated in the seminar and presented state-of-the-art and ongoing research related to the seminar topic. An executive summary of the seminar, abstracts of the talks from participants and working group discussions are presented in the forthcoming sections

    ReadMe++: Benchmarking Multilingual Language Models for Multi-Domain Readability Assessment

    Full text link
    We present a systematic study and comprehensive evaluation of large language models for automatic multilingual readability assessment. In particular, we construct ReadMe++, a multilingual multi-domain dataset with human annotations of 9757 sentences in Arabic, English, French, Hindi, and Russian collected from 112 different data sources. ReadMe++ offers more domain and language diversity than existing readability datasets, making it ideal for benchmarking multilingual and non-English language models (including mBERT, XLM-R, mT5, Llama-2, GPT-4, etc.) in the supervised, unsupervised, and few-shot prompting settings. Our experiments reveal that models fine-tuned on ReadMe++ outperform those trained on single-domain datasets, showcasing superior performance on multi-domain readability assessment and cross-lingual transfer capabilities. We also compare to traditional readability metrics (such as Flesch-Kincaid Grade Level and Open Source Metric for Measuring Arabic Narratives), as well as the state-of-the-art unsupervised metric RSRS (Martinc et al., 2021). We will make our data and code publicly available at: https://github.com/tareknaous/readme.Comment: We have added French and Russian as two new languages to the corpu
    corecore