4,958 research outputs found

    Combinatorial Multi-Access Coded Caching: Improved Rate-Memory Trade-off with Coded Placement

    Full text link
    This work considers the combinatorial multi-access coded caching problem introduced in the recent work by Muralidhar \textit{et al.} [P. N. Muralidhar, D. Katyal, and B. S. Rajan, ``Maddah-Ali-Niesen scheme for multi-access coded caching,'' in \textit{IEEE Inf. Theory Workshop (ITW)}, 2021] The problem setting consists of a central server having a library of NN files and CC caches each of capacity MM. Each user in the system can access a unique set of r<Cr<C caches, and there exist users corresponding to every distinct set of rr caches. Therefore, the number of users in the system is (Cr)\binom{C}{r}. For the aforementioned combinatorial multi-access setting, we propose a coded caching scheme with an MDS code-based coded placement. This novel placement technique helps to achieve a better rate in the delivery phase compared to the optimal scheme under uncoded placement, when M>N/CM> N/C. For a lower memory regime, we present another scheme with coded placement, which outperforms the optimal scheme under uncoded placement if the number of files is no more than the number of users. Further, we derive an information-theoretic lower bound on the optimal rate-memory trade-off of the combinatorial multi-access coded caching scheme. Finally, using the derived lower bound, we show that the first scheme is optimal in the higher memory regime, and the second scheme is optimal if N≀(Cr)N\leq \binom{C}{r}.Comment: 15 pages and 5 figure

    Cache-Aided Coded Multicast for Correlated Sources

    Full text link
    The combination of edge caching and coded multicasting is a promising approach to improve the efficiency of content delivery over cache-aided networks. The global caching gain resulting from content overlap distributed across the network in current solutions is limited due to the increasingly personalized nature of the content consumed by users. In this paper, the cache-aided coded multicast problem is generalized to account for the correlation among the network content by formulating a source compression problem with distributed side information. A correlation-aware achievable scheme is proposed and an upper bound on its performance is derived. It is shown that considerable load reductions can be achieved, compared to state of the art correlation-unaware schemes, when caching and delivery phases specifically account for the correlation among the content files.Comment: In proceeding of IEEE International Symposium on Turbo Codes and Iterative Information Processing (ISTC), 201

    Multi-Antenna Coded Caching

    Full text link
    In this paper we consider a single-cell downlink scenario where a multiple-antenna base station delivers contents to multiple cache-enabled user terminals. Based on the multicasting opportunities provided by the so-called Coded Caching technique, we investigate three delivery approaches. Our baseline scheme employs the coded caching technique on top of max-min fair multicasting. The second one consists of a joint design of Zero-Forcing (ZF) and coded caching, where the coded chunks are formed in the signal domain (complex field). The third scheme is similar to the second one with the difference that the coded chunks are formed in the data domain (finite field). We derive closed-form rate expressions where our results suggest that the latter two schemes surpass the first one in terms of Degrees of Freedom (DoF). However, at the intermediate SNR regime forming coded chunks in the signal domain results in power loss, and will deteriorate throughput of the second scheme. The main message of our paper is that the schemes performing well in terms of DoF may not be directly appropriate for intermediate SNR regimes, and modified schemes should be employed.Comment: 7 pages, 2 figure
    • …
    corecore