81,043 research outputs found

    Convolutional Patch Representations for Image Retrieval: an Unsupervised Approach

    Get PDF
    International audienceConvolutional neural networks (CNNs) have recently received a lot of attention due to their ability to model local stationary structures in natural images in a multi-scale fashion, when learning all model parameters with supervision. While excellent performance was achieved for image classification when large amounts of labeled visual data are available, their success for un-supervised tasks such as image retrieval has been moderate so far. Our paper focuses on this latter setting and explores several methods for learning patch descriptors without supervision with application to matching and instance-level retrieval. To that effect, we propose a new family of convolutional descriptors for patch representation , based on the recently introduced convolutional kernel networks. We show that our descriptor, named Patch-CKN, performs better than SIFT as well as other convolutional networks learned by artificially introducing supervision and is significantly faster to train. To demonstrate its effectiveness, we perform an extensive evaluation on standard benchmarks for patch and image retrieval where we obtain state-of-the-art results. We also introduce a new dataset called RomePatches, which allows to simultaneously study descriptor performance for patch and image retrieval

    Exploiting Local Features from Deep Networks for Image Retrieval

    Full text link
    Deep convolutional neural networks have been successfully applied to image classification tasks. When these same networks have been applied to image retrieval, the assumption has been made that the last layers would give the best performance, as they do in classification. We show that for instance-level image retrieval, lower layers often perform better than the last layers in convolutional neural networks. We present an approach for extracting convolutional features from different layers of the networks, and adopt VLAD encoding to encode features into a single vector for each image. We investigate the effect of different layers and scales of input images on the performance of convolutional features using the recent deep networks OxfordNet and GoogLeNet. Experiments demonstrate that intermediate layers or higher layers with finer scales produce better results for image retrieval, compared to the last layer. When using compressed 128-D VLAD descriptors, our method obtains state-of-the-art results and outperforms other VLAD and CNN based approaches on two out of three test datasets. Our work provides guidance for transferring deep networks trained on image classification to image retrieval tasks.Comment: CVPR DeepVision Workshop 201

    Multi-scale Orderless Pooling of Deep Convolutional Activation Features

    Full text link
    Deep convolutional neural networks (CNN) have shown their promise as a universal representation for recognition. However, global CNN activations lack geometric invariance, which limits their robustness for classification and matching of highly variable scenes. To improve the invariance of CNN activations without degrading their discriminative power, this paper presents a simple but effective scheme called multi-scale orderless pooling (MOP-CNN). This scheme extracts CNN activations for local patches at multiple scale levels, performs orderless VLAD pooling of these activations at each level separately, and concatenates the result. The resulting MOP-CNN representation can be used as a generic feature for either supervised or unsupervised recognition tasks, from image classification to instance-level retrieval; it consistently outperforms global CNN activations without requiring any joint training of prediction layers for a particular target dataset. In absolute terms, it achieves state-of-the-art results on the challenging SUN397 and MIT Indoor Scenes classification datasets, and competitive results on ILSVRC2012/2013 classification and INRIA Holidays retrieval datasets

    Region-DH: Region-based Deep Hashing for Multi-Instance Aware Image Retrieval

    Get PDF
    This paper introduces an instance-aware hashing approach Region-DH for large-scale multi-label image retrieval. The accurate object bounds can significantly increase the hashing performance of instance features. We design a unified deep neural network that simultaneously localizes and recognizes objects while learning the hash functions for binary codes. Region-DH focuses on recognizing objects and building compact binary codes that represent more foreground patterns. Region-DH can flexibly be used with existing deep neural networks or more complex object detectors for image hashing. Extensive experiments are performed on benchmark datasets and show the efficacy and robustness of the proposed Region-DH model
    corecore