21,931 research outputs found

    Hierarchical interface-based supervisory control using the conflict preorder

    Get PDF
    Hierarchical Interface-Based Supervisory Control decomposes a large discrete event system into subsystems linked to each other by interfaces, facilitating the design of complex systems and the re-use of components. By ensuring that each subsystem satisfies its interface consistency conditions locally, it can be ensured that the complete system is controllable and nonblocking. The interface consistency conditions proposed in this paper are based on the conflict preorder, providing increased flexibility over previous approaches. The framework requires only a small number of interface consistency conditions, and allows for the design of multi-level hierarchies that are provably controllable and nonblocking

    Hierarchical modelling of manufacturing systems using discrete event systems and the conflict preorder

    Get PDF
    This paper introduces Hierarchical Interface-Based Supervisory Control using the Conflict Preorder and applies it to the design of two manufacturing systems models of practical scale. Hierarchical Interface-Based Supervisory Control decomposes a large system into subsystems linked to each other by interfaces, facilitating the design of complex systems and the re-use of components. By ensuring that each subsystem satisfies its interface consistency conditions locally, it can be ensured that the complete system is controllable and nonblocking. The interface consistency conditions proposed in this paper are based on the conflict preorder, providing increased flexibility over previous approaches. The framework requires only a small number of interface consistency conditions, and allows for the design of multi-level hierarchies that are provably controllable and nonblocking

    Generalised Nonblocking

    Get PDF
    This paper studies the nonblocking check used in supervisory control of discrete event systems and its limitations. Different examples with different liveness requirements are discussed. It is shown that the standard nonblocking check can be used to specify most requirements of interest, but that it lacks expressive power in a few cases. A generalised nonblocking check is proposed to overcome the weakness, and its relationship to standard nonblocking is explored. Results suggest that generalised nonblocking, while having the same useful properties with respect to synthesis and compositional verification, can provide for more concise problem representations in some cases

    Levels of abstraction in human supervisory control teams

    Get PDF
    This paper aims to report a study into the levels of abstraction hierarchy (LOAH) in two energy distribution teams. The original proposition for the LOAH was that it depicted five levels of system representation, working from functional purpose through to physical form to determine causes of a malfunction, or from physical form to functional purpose to determine the purpose of system function. The LOAH has been widely used throughout human supervisory control research to explain individual behaviour. The research seeks to focus on the application the LOAH to human supervisory control teams in semi-automated “intelligent” systems

    Prospects of a mathematical theory of human behavior in complex man-machine systems tasks

    Get PDF
    A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued

    Mixed-integer-linear-programming-based energy management system for hybrid PV-wind-battery microgrids: Modeling, design, and experimental verification

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicrogrids are energy systems that aggregate distributed energy resources, loads, and power electronics devices in a stable and balanced way. They rely on energy management systems to schedule optimally the distributed energy resources. Conventionally, many scheduling problems have been solved by using complex algorithms that, even so, do not consider the operation of the distributed energy resources. This paper presents the modeling and design of a modular energy management system and its integration to a grid-connected battery-based microgrid. The scheduling model is a power generation-side strategy, defined as a general mixed-integer linear programming by taking into account two stages for proper charging of the storage units. This model is considered as a deterministic problem that aims to minimize operating costs and promote self-consumption based on 24-hour ahead forecast data. The operation of the microgrid is complemented with a supervisory control stage that compensates any mismatch between the offline scheduling process and the real time microgrid operation. The proposal has been tested experimentally in a hybrid microgrid at the Microgrid Research Laboratory, Aalborg University.Peer ReviewedPostprint (author's final draft

    Safety impacts of in-car navigation systems

    Get PDF

    Virtuality in human supervisory control: Assessing the effects of psychological and social remoteness

    Get PDF
    Virtuality would seem to offer certain advantages for human supervisory control. First, it could provide a physical analogue of the 'real world' environment. Second, it does not require control room engineers to be in the same place as each other. In order to investigate these issues, a low-fidelity simulation of an energy distribution network was developed. The main aims of the research were to assess some of the psychological concerns associated with virtual environments. First, it may result in the social isolation of the people, and it may have dramatic effects upon the nature of the work. Second, a direct physical correspondence with the 'real world' may not best support human supervisory control activities. Experimental teams were asked to control an energy distribution network. Measures of team performance, group identity and core job characteristics were taken. In general terms, the results showed that teams working in the same location performed better than team who were remote from one another
    • 

    corecore