7,344 research outputs found

    Deep Cross-Modal Correlation Learning for Audio and Lyrics in Music Retrieval

    Get PDF
    Deep cross-modal learning has successfully demonstrated excellent performance in cross-modal multimedia retrieval, with the aim of learning joint representations between different data modalities. Unfortunately, little research focuses on cross-modal correlation learning where temporal structures of different data modalities such as audio and lyrics should be taken into account. Stemming from the characteristic of temporal structures of music in nature, we are motivated to learn the deep sequential correlation between audio and lyrics. In this work, we propose a deep cross-modal correlation learning architecture involving two-branch deep neural networks for audio modality and text modality (lyrics). Data in different modalities are converted to the same canonical space where inter modal canonical correlation analysis is utilized as an objective function to calculate the similarity of temporal structures. This is the first study that uses deep architectures for learning the temporal correlation between audio and lyrics. A pre-trained Doc2Vec model followed by fully-connected layers is used to represent lyrics. Two significant contributions are made in the audio branch, as follows: i) We propose an end-to-end network to learn cross-modal correlation between audio and lyrics, where feature extraction and correlation learning are simultaneously performed and joint representation is learned by considering temporal structures. ii) As for feature extraction, we further represent an audio signal by a short sequence of local summaries (VGG16 features) and apply a recurrent neural network to compute a compact feature that better learns temporal structures of music audio. Experimental results, using audio to retrieve lyrics or using lyrics to retrieve audio, verify the effectiveness of the proposed deep correlation learning architectures in cross-modal music retrieval

    Exploiting Deep Features for Remote Sensing Image Retrieval: A Systematic Investigation

    Full text link
    Remote sensing (RS) image retrieval is of great significant for geological information mining. Over the past two decades, a large amount of research on this task has been carried out, which mainly focuses on the following three core issues: feature extraction, similarity metric and relevance feedback. Due to the complexity and multiformity of ground objects in high-resolution remote sensing (HRRS) images, there is still room for improvement in the current retrieval approaches. In this paper, we analyze the three core issues of RS image retrieval and provide a comprehensive review on existing methods. Furthermore, for the goal to advance the state-of-the-art in HRRS image retrieval, we focus on the feature extraction issue and delve how to use powerful deep representations to address this task. We conduct systematic investigation on evaluating correlative factors that may affect the performance of deep features. By optimizing each factor, we acquire remarkable retrieval results on publicly available HRRS datasets. Finally, we explain the experimental phenomenon in detail and draw conclusions according to our analysis. Our work can serve as a guiding role for the research of content-based RS image retrieval

    Class-Weighted Convolutional Features for Visual Instance Search

    Get PDF
    Image retrieval in realistic scenarios targets large dynamic datasets of unlabeled images. In these cases, training or fine-tuning a model every time new images are added to the database is neither efficient nor scalable. Convolutional neural networks trained for image classification over large datasets have been proven effective feature extractors for image retrieval. The most successful approaches are based on encoding the activations of convolutional layers, as they convey the image spatial information. In this paper, we go beyond this spatial information and propose a local-aware encoding of convolutional features based on semantic information predicted in the target image. To this end, we obtain the most discriminative regions of an image using Class Activation Maps (CAMs). CAMs are based on the knowledge contained in the network and therefore, our approach, has the additional advantage of not requiring external information. In addition, we use CAMs to generate object proposals during an unsupervised re-ranking stage after a first fast search. Our experiments on two public available datasets for instance retrieval, Oxford5k and Paris6k, demonstrate the competitiveness of our approach outperforming the current state-of-the-art when using off-the-shelf models trained on ImageNet. The source code and model used in this paper are publicly available at http://imatge-upc.github.io/retrieval-2017-cam/.Comment: To appear in the British Machine Vision Conference (BMVC), September 201
    • …
    corecore