436 research outputs found

    Topological Foundations of Cognitive Science

    Get PDF
    A collection of papers presented at the First International Summer Institute in Cognitive Science, University at Buffalo, July 1994, including the following papers: ** Topological Foundations of Cognitive Science, Barry Smith ** The Bounds of Axiomatisation, Graham White ** Rethinking Boundaries, Wojciech Zelaniec ** Sheaf Mereology and Space Cognition, Jean Petitot ** A Mereotopological Definition of 'Point', Carola Eschenbach ** Discreteness, Finiteness, and the Structure of Topological Spaces, Christopher Habel ** Mass Reference and the Geometry of Solids, Almerindo E. Ojeda ** Defining a 'Doughnut' Made Difficult, N .M. Gotts ** A Theory of Spatial Regions with Indeterminate Boundaries, A.G. Cohn and N.M. Gotts ** Mereotopological Construction of Time from Events, Fabio Pianesi and Achille C. Varzi ** Computational Mereology: A Study of Part-of Relations for Multi-media Indexing, Wlodek Zadrozny and Michelle Ki

    Answer Set Programming Modulo `Space-Time'

    Full text link
    We present ASP Modulo `Space-Time', a declarative representational and computational framework to perform commonsense reasoning about regions with both spatial and temporal components. Supported are capabilities for mixed qualitative-quantitative reasoning, consistency checking, and inferring compositions of space-time relations; these capabilities combine and synergise for applications in a range of AI application areas where the processing and interpretation of spatio-temporal data is crucial. The framework and resulting system is the only general KR-based method for declaratively reasoning about the dynamics of `space-time' regions as first-class objects. We present an empirical evaluation (with scalability and robustness results), and include diverse application examples involving interpretation and control tasks

    Topological Properties in Ontology-based Applications

    Get PDF
    Proceedings of: 11th International Conference on Intelligent Systems Design and Applications, Córdoba, Spain, 22 – 24 November, 2011.Representation and reasoning with spatial properties is essential in several application domains where ontologies are being successfully applied; e.g., Information Fusion systems. This requires a full characterization of the semantics of relations such as adjacent, included, overlapping, etc. Nevertheless, ontologies are not expressive enough to directly support widely-use spatial or topological theories, such as the Region Connection Calculus (RCC). In addition, these properties must be properly instantiated in the ontology, which may require expensive calculations. This paper presents a practical approach to represent and reason with topological properties in ontology-based systems, as well as some optimization techniques that have been applied in a video-based Information Fusion application.This work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC,CAM CONTEXTS (S2009/ TIC-1485) and DPS2008-07029-C02-02.Publicad

    Applying spatial reasoning to topographical data with a grounded geographical ontology

    Get PDF
    Grounding an ontology upon geographical data has been pro- posed as a method of handling the vagueness in the domain more effectively. In order to do this, we require methods of reasoning about the spatial relations between the regions within the data. This stage can be computationally expensive, as we require information on the location of points in relation to each other. This paper illustrates how using knowledge about regions allows us to reduce the computation required in an efficient and easy to understand manner. Further, we show how this system can be implemented in co-ordination with segmented data to reason abou

    Combining Spatial and Temporal Logics: Expressiveness vs. Complexity

    Full text link
    In this paper, we construct and investigate a hierarchy of spatio-temporal formalisms that result from various combinations of propositional spatial and temporal logics such as the propositional temporal logic PTL, the spatial logics RCC-8, BRCC-8, S4u and their fragments. The obtained results give a clear picture of the trade-off between expressiveness and computational realisability within the hierarchy. We demonstrate how different combining principles as well as spatial and temporal primitives can produce NP-, PSPACE-, EXPSPACE-, 2EXPSPACE-complete, and even undecidable spatio-temporal logics out of components that are at most NP- or PSPACE-complete

    A Practical Approach to the Development of Ontology-Based Information Fusion Systems

    Get PDF
    Proceedings of: NATO Advanced Study Institute (ASI) on Prediction and Recognition of Piracy Efforts Using Collaborative Human-Centric Information Systems, Salamanca, 19-30 September, 2011Ontology-based representations are gaining momentum among other alternatives to implement the knowledge model of high-level fusion applications. In this paper, we provide an introduction to the theoretical foundations of ontology-based knowledge representation and reasoning, with a particular focus on the issues that appear in maritime security –where heterogeneous regulations, information sources, users, and systems are involved. We also present some current approaches and existing technologies for high-level fusion based on ontological representations. Unfortunately, current tools for the practical implementation of ontology-based systems are not fully standardized, or even prepared to work together in medium-scale systems. Accordingly, we discuss different alternatives to face problems such as spatial and temporal knowledge representation or uncertainty management. To illustrate the conclusions drawn from this research, an ontology-based semantic tracking system is briefly presented. Results and latent capabilities of this framework are shown at the end of the paper, where we also envision future opportunities for this kind of applications.This research activity is supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, CAM CONTEXTS (S2009/TIC-1485) and DPS 2008-07029-C02-02.Publicad

    Qualitative Spatial Reasoning with Holed Regions

    Get PDF
    The intricacies of real-world and constructed spatial entities call for versatile spatial data types to model complex spatial objects, often characterized by the presence of holes. To date, however, relations of simple, hole-free regions have been the prevailing approaches for spatial qualitative reasoning. Even though such relations may be applied to holed regions, they do not take into consideration the consequences of the existence of the holes, limiting the ability to query and compare more complex spatial configurations. To overcome such limitations, this thesis develops a formal framework for spatial reasoning with topological relations over two-dimensional holed regions, called the Holed Regions Model (HRM), and a similarity evaluation method for comparing relations featuring a multi-holed region, called the Frequency Distribution Method (FDM). The HRM comprises a set of 23 relations between a hole-free and a single-holed region, a set of 152 relations between two single-holed regions, as well as the composition inferences enabled from both sets of relations. The inference results reveal that the fine-grained topological relations over holed regions provide more refined composition results in over 50% of the cases when compared with the results of hole-free regions relations. The HRM also accommodates the relations between a hole-free region and a multi-holed region. Each such relation is called a multi-element relation, as it can be deconstructed into a number of elements—relations between a hole-free and a singleholed region—that is equal to the number of holes, regarding each hole as if it were the only one. FDM facilitates the similarity assessment among multi-element relations. The similarity is evaluated by comparing the frequency summaries of the single-holed region relations. The multi-holed regions of the relations under comparison may differ in the number of holes. In order to assess the similarity of such relations, one multi-holed region is considered as the result of dropping from or adding holes to the other region. Therefore, the effect that two concurrent changes have on the similarity of the relations is evaluated. The first is the change in the topological relation between the regions, and the second is the change in a region’s topology brought upon by elimination or addition of holes. The results from the similarity evaluations examined in this thesis show that the topological placement of the holes in relation to the hole-free region influences relation similarity as much as the relation between the hole-free region and the host of the holes. When the relations under comparison have fewer characteristics in common, the placement of the holes is the determining factor for the similarity rankings among relations. The distilled and more correct composition and similarity evaluation results enabled by the relations over holed regions indicate that spatial reasoning over such regions differs from the prevailing reasoning over hole-free regions. Insights from such results are expected to contribute to the design of future geographic information systems that more adequately process complex spatial phenomena, and are better equipped for advanced database query answering

    Qualitative Spatial Reasoning with Holed Regions

    Get PDF
    The intricacies of real-world and constructed spatial entities call for versatile spatial data types to model complex spatial objects, often characterized by the presence of holes. To date, however, relations of simple, hole-free regions have been the prevailing approaches for spatial qualitative reasoning. Even though such relations may be applied to holed regions, they do not take into consideration the consequences of the existence of the holes, limiting the ability to query and compare more complex spatial configurations. To overcome such limitations, this thesis develops a formal framework for spatial reasoning with topological relations over two-dimensional holed regions, called the Holed Regions Model (HRM), and a similarity evaluation method for comparing relations featuring a multi-holed region, called the Frequency Distribution Method (FDM). The HRM comprises a set of 23 relations between a hole-free and a single-holed region, a set of 152 relations between two single-holed regions, as well as the composition inferences enabled from both sets of relations. The inference results reveal that the fine-grained topological relations over holed regions provide more refined composition results in over 50% of the cases when compared with the results of hole-free regions relations. The HRM also accommodates the relations between a hole-free region and a multi-holed region. Each such relation is called a multi-element relation, as it can be deconstructed into a number of elements—relations between a hole-free and a singleholed region—that is equal to the number of holes, regarding each hole as if it were the only one. FDM facilitates the similarity assessment among multi-element relations. The similarity is evaluated by comparing the frequency summaries of the single-holed region relations. The multi-holed regions of the relations under comparison may differ in the number of holes. In order to assess the similarity of such relations, one multi-holed region is considered as the result of dropping from or adding holes to the other region. Therefore, the effect that two concurrent changes have on the similarity of the relations is evaluated. The first is the change in the topological relation between the regions, and the second is the change in a region’s topology brought upon by elimination or addition of holes. The results from the similarity evaluations examined in this thesis show that the topological placement of the holes in relation to the hole-free region influences relation similarity as much as the relation between the hole-free region and the host of the holes. When the relations under comparison have fewer characteristics in common, the placement of the holes is the determining factor for the similarity rankings among relations. The distilled and more correct composition and similarity evaluation results enabled by the relations over holed regions indicate that spatial reasoning over such regions differs from the prevailing reasoning over hole-free regions. Insights from such results are expected to contribute to the design of future geographic information systems that more adequately process complex spatial phenomena, and are better equipped for advanced database query answering
    • 

    corecore