189 research outputs found

    Container-based load balancing for energy efficiency in software-defined edge computing environment

    Get PDF
    The workload generated by the Internet of Things (IoT)-based infrastructure is often handled by the cloud data centers (DCs). However, in recent time, an exponential increase in the deployment of the IoT-based infrastructure has escalated the workload on the DCs. So, these DCs are not fully capable to meet the strict demand of IoT devices in regard to the lower latency as well as high data rate while provisioning IoT workloads. Therefore, to reinforce the latency-sensitive workloads, an intersection layer known as edge computing has successfully balanced the entire service provisioning landscape. In this IoT-edge-cloud ecosystem, large number of interactions and data transmissions among different layer can increase the load on underlying network infrastructure. So, software-defined edge computing has emerged as a viable solution to resolve these latency-sensitive workload issues. Additionally, energy consumption has been witnessed as a major challenge in resource-constrained edge systems. The existing solutions are not fully compatible in Software-defined Edge ecosystem for handling IoT workloads with an optimal trade-off between energy-efficiency and latency. Hence, this article proposes a lightweight and energy-efficient container-as-a-service (CaaS) approach based on the software-define edge computing to provision the workloads generated from the latency-sensitive IoT applications. A Stackelberg game is formulated for a two-period resource allocation between end-user/IoT devices and Edge devices considering the service level agreement. Furthermore, an energy-efficient ensemble for container allocation, consolidation and migration is also designed for load balancing in software-defined edge computing environment. The proposed approach is validated through a simulated environment with respect to CPU serve time, network serve time, overall delay, lastly energy consumption. The results obtained show the superiority of the proposed in comparison to the existing variants

    Game Theoretic Approaches to Massive Data Processing in Wireless Networks

    Full text link
    Wireless communication networks are becoming highly virtualized with two-layer hierarchies, in which controllers at the upper layer with tasks to achieve can ask a large number of agents at the lower layer to help realize computation, storage, and transmission functions. Through offloading data processing to the agents, the controllers can accomplish otherwise prohibitive big data processing. Incentive mechanisms are needed for the agents to perform the controllers' tasks in order to satisfy the corresponding objectives of controllers and agents. In this article, a hierarchical game framework with fast convergence and scalability is proposed to meet the demand for real-time processing for such situations. Possible future research directions in this emerging area are also discussed

    Game theory for cooperation in multi-access edge computing

    Get PDF
    Cooperative strategies amongst network players can improve network performance and spectrum utilization in future networking environments. Game Theory is very suitable for these emerging scenarios, since it models high-complex interactions among distributed decision makers. It also finds the more convenient management policies for the diverse players (e.g., content providers, cloud providers, edge providers, brokers, network providers, or users). These management policies optimize the performance of the overall network infrastructure with a fair utilization of their resources. This chapter discusses relevant theoretical models that enable cooperation amongst the players in distinct ways through, namely, pricing or reputation. In addition, the authors highlight open problems, such as the lack of proper models for dynamic and incomplete information scenarios. These upcoming scenarios are associated to computing and storage at the network edge, as well as, the deployment of large-scale IoT systems. The chapter finalizes by discussing a business model for future networks.info:eu-repo/semantics/acceptedVersio

    Joint Resource, Deployment, and Caching Optimization for AR Applications in Dynamic UAV NOMA Networks

    Get PDF

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Game theory for collaboration in future networks

    Get PDF
    Cooperative strategies have the great potential of improving network performance and spectrum utilization in future networking environments. This new paradigm in terms of network management, however, requires a novel design and analysis framework targeting a highly flexible networking solution with a distributed architecture. Game Theory is very suitable for this task, since it is a comprehensive mathematical tool for modeling the highly complex interactions among distributed and intelligent decision makers. In this way, the more convenient management policies for the diverse players (e.g. content providers, cloud providers, home providers, brokers, network providers or users) should be found to optimize the performance of the overall network infrastructure. The authors discuss in this chapter several Game Theory models/concepts that are highly relevant for enabling collaboration among the diverse players, using different ways to incentivize it, namely through pricing or reputation. In addition, the authors highlight several related open problems, such as the lack of proper models for dynamic and incomplete information games in this area.info:eu-repo/semantics/acceptedVersio
    • …
    corecore