439 research outputs found

    Wycinanki: Production of a Non-Photorealistic Rendered Short Film

    Get PDF
    Animals have traditionally occupied a special role in human culture and media, and are also often the focus of today\u27s computer-animated films. The computer graphics (CG) short, Wycinanki, examines the human-animal bond through the story of a woman who rescues animals in Poland. Additionally, Wycinanki draws on the cultural history of its protagonist with its unique paper-cut render style. The goal of this film is to engage viewers and enhance the staying power of the film\u27s message via a compelling story and visuals. A significant amount of environment and character development and testing was necessary to translate the 2D art of papercutting into an effective animated CG short. The final render pipeline, while incorporating varying graphics programs and approaches, resulted in efficient renders and composites that satisfied the visual demands of the story

    Combining Procedural and Hand Modeling Techniques for Creating Animated Digital 3D Natural Environments

    Get PDF
    This thesis focuses on a systematic solution for rendering 3D photorealistic natural environments using Maya\u27s procedural methods and ZBrush. The methods used in this thesis started with comparing two industry specific procedural applications, Vue and Maya\u27s Paint Effects, to determine which is better suited for applying animated procedural effects with the highest level of fidelity and expandability. Generated objects from Paint Effects contained the highest potential through object attributes, texturing and lighting. To optimize results further, compatibility with sculpting programs such as ZBrush are required to sculpt higher levels of detail. The final combination workflow produces results used in the short film Fall. The need for producing these effects is attributed to the growth of the visual effect industry\u27s ability to deliver realistic simulated complexities of nature and as such, the public\u27s insatiable need to see them on screen. Usually, however, the requirements for delivering a photorealistic digital environment fall under tight deadlines due to various phases of the visual effects project being interconnected across multiple production houses, thereby requiring the need for effective methods to deliver a high-end visual presentation. The use of a procedural system, such as an L-system, is often an initial step within a workflow leading toward creating photorealistic vegetation for visual effects environments. Procedure-based systems, such as Maya\u27s Paint Effects, feature robust controls that can generate many natural objects. A balance is thus created between being able to model objects quickly, but with limited detail, and control. Other methods outside this system must be used to achieve higher levels of fidelity through the use of attributes, expressions, lighting and texturing. Utilizing the procedural engine within Maya\u27s Paint Effects allows the beginning stages of modeling a 3D natural environment. ZBrush\u27s manual system approach can further bring the aesthetics to a much finer degree of fidelity. The benefit in leveraging both types of systems results in photorealistic objects that preserve all of the procedural and dynamic forces specified within the Paint Effects procedural engine

    A Van Gogh inspired 3D Shader Methodology

    Get PDF
    This study develops an approach to developing surface shading for computer-generated 3D head models that adapts aesthetics from the post-impressionist portrait painting style of Vincent Van Gogh. This research is an attempt to reconcile a 2D expressionist style of painting and 3D digital computer generated imagery. The focus of this research is on developing a surface shading methodology for creating 3D impasto painterly renderings informed by Van Gogh’s self-portrait paintings. Visual analysis of several of Van Gogh’s self-portraits reveal the characteristics of his overall rendering style that are essential in designing methods for shading and texturing 3D head models. A method for shading is proposed using existing surfacing and rendering tools to create 3D digital heads rendered in Van Gogh’s style. The designed shading methodology describes procedures that generate brushstroke patterns. User controls for brushstroke profile, size, color and direction are provided to allow variations in the brushstroke patterns. These patterns are used to define thick oil paint surface properties for 3D digital models. A discussion of the range of results achieved using the designed shading methodology reveal the variations in the rendering style that can be achieved, which reflects a wide range of expressive 3D portrait rendering styles. Therefore, this study is useful in understanding Van Gogh’s expressive portrait painting style and in applying the essence of his work to synthesized 3D portraits

    Interactive translucent volume rendering and procedural modeling

    Get PDF
    Journal ArticleDirect volume rendering is a commonly used technique in visualization applications. Many of these applications require sophisticated shading models to capture subtle lighting effects and characteristics of volume metric data and materials. Many common objects and natural phenomena exhibit visual quality that cannot be captured using simple lighting models or cannot be solved at interactive rates using more sophisticated methods. We present a simple yet effective interactive shading model which captures volumetric light attenuation effects to produce volumetric shadows and the subtle appearance of translucency. We also present a technique for volume displacement or perturbation that allows realistic interactive modeling of high frequency detail for real and synthetic volumetric data

    Real-time Realistic Rendering Of Nature Scenes With Dynamic Lighting

    Get PDF
    Rendering of natural scenes has interested the scientific community for a long time due to its numerous applications. The targeted goal is to create images that are similar to what a viewer can see in real life with his/her eyes. The main obstacle is complexity: nature scenes from real life contain a huge number of small details that are hard to model, take a lot of time to render and require a huge amount of memory unavailable in current computers. This complexity mainly comes from geometry and lighting. The goal of our research is to overcome this complexity and to achieve real-time rendering of nature scenes while providing visually convincing dynamic global illumination. Our work focuses on grass and trees as they are commonly visible in everyday life. We handle geometry and lighting complexities for grass to render millions of grass blades interactively with dynamic lighting. As for lighting complexity, we address real-time rendering of trees by proposing a lighting model that handles indirect lighting. Our work makes extensive use of the current generation of Graphics Processing Units (GPUs) to meet the real-time requirement and to leave the CPU free to carry out other tasks

    Hardware-supported cloth rendering

    Get PDF
    Many computer graphics applications involve rendering humans and their natural surroundings, which inevitably requires displaying textiles. To accurately resemble the appearance of e.g. clothing or furniture, reflection models are needed which are capable of modeling the highly complex reflection effects exhibited by textiles. This thesis focuses on generating realistic high quality images of textiles by developing suitable reflection models and introducing algorithms for illumination computation of cloth surfaces. As efficiency is essential for illumination computation, we additionally place great importance on exploiting graphics hardware to achieve high frame rates. To this end, we present a variety of hardware-accelerated methods to compute the illumination in textile micro geometry. We begin by showing how indirect illumination and shadows can be efficiently accounted for in heightfields, parametric surfaces, and triangle meshes. Using these methods, we can considerably speed up the computation of data structures like tabular bidirectional reflectance distribution functions (BRDFs) and bidirectional texture functions (BTFs), and also efficiently illuminate heightfield geometry and bump maps. Furthermore, we develop two shading models, which account for all important reflection properties exhibited by textiles. While the first model is suited for rendering textiles with general micro geometry, the second, based on volumetric textures, is specially tailored for rendering knitwear. To apply the second model e.g. to the triangle mesh of a garment, we finally introduce a new rendering algorithm for displaying semi-transparent volumetric textures at high interactive rates.Eine Vielzahl von Anwendungen in der Computergraphik schließen auch die Darstellung von Menschen und deren natürlicher Umgebung ein, was zwangsläufig auch die Darstellung von Textilien erfordert. Um beispielsweise das Aussehen von Bekleidung oder Möbeln genau zu erfassen, werden Reflexionsmodelle benötigt, die in der Lage sind, die hochkomplexen Reflexionseffekte von Textilien zu berücksichtigen. Der Schwerpunkt dieser Dissertation liegt in der Generierung qualitativ hochwertiger Bilder von Textilien, was wir durch die Entwicklung geeigneter Reflexionsmodelle und von Algorithmen zur Beleuchtungsberechnung an Stoffoberflächen ermöglichen. Da Effizienz essentiell für die Beleuchtungsberechnung ist, nutzen wir die Möglichkeiten von Graphikhardware aus, um hohe Bildwiederholraten zu erzielen. Hierfür legen wir eine Vielzahl von hardware-beschleunigten Methoden zur Beleuchtungsberechnung der Mikrogeometrie von Textilien vor. Zuerst zeigen wir, wie indirekte Beleuchtung und Schatten effizient in Höhenfeldern, parametrischen Flächen und Dreiecksnetzen berücksichtigt werden können. Mit Hilfe dieser Methoden kann die Berechnung von Datenstrukturen wie tabellarischer bidirectional reflectance distribution functions (BRDFs) und bidirectional texture functions (BTFs) erheblich beschleunigt, sowie die Beleuchtung von Höhenfeld-Geometrie und Bumpmaps effizient errechnet werden.Weiterhin entwickeln wir zwei Reflexionsmodelle, welche alle wichtigen Reflexionseigenschaften berücksichtigen, die Textilien aufweisen. Während das erste Modell sich zur Darstellung von Textilien mit allgemeiner Mikrogeometrie eignet, ist das zweite, welches auf volumetrischen Texturen basiert, speziell auf die Darstellung von Strickwaren zugeschnitten. Um das zweite Modell z.B. auf das Dreiecksnetz eines Bekleidungsstückes anzuwenden führen wir einen neuen Renderingalgorithmus für die Darstellung von semi-transparenten volumetrischen Texturen mit hohen Bildwiederholraten ein

    Force-feedback in virtual environments

    Get PDF
    Supervised by Mandayam A. Srinivasan.Also issued as Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2000.Includes bibliographical references (leaves 121-127).by Chih-Hao Ho

    Real-time simulation and visualisation of cloth using edge-based adaptive meshes

    Get PDF
    Real-time rendering and the animation of realistic virtual environments and characters has progressed at a great pace, following advances in computer graphics hardware in the last decade. The role of cloth simulation is becoming ever more important in the quest to improve the realism of virtual environments. The real-time simulation of cloth and clothing is important for many applications such as virtual reality, crowd simulation, games and software for online clothes shopping. A large number of polygons are necessary to depict the highly exible nature of cloth with wrinkling and frequent changes in its curvature. In combination with the physical calculations which model the deformations, the effort required to simulate cloth in detail is very computationally expensive resulting in much diffculty for its realistic simulation at interactive frame rates. Real-time cloth simulations can lack quality and realism compared to their offline counterparts, since coarse meshes must often be employed for performance reasons. The focus of this thesis is to develop techniques to allow the real-time simulation of realistic cloth and clothing. Adaptive meshes have previously been developed to act as a bridge between low and high polygon meshes, aiming to adaptively exploit variations in the shape of the cloth. The mesh complexity is dynamically increased or refined to balance quality against computational cost during a simulation. A limitation of many approaches is they do not often consider the decimation or coarsening of previously refined areas, or otherwise are not fast enough for real-time applications. A novel edge-based adaptive mesh is developed for the fast incremental refinement and coarsening of a triangular mesh. A mass-spring network is integrated into the mesh permitting the real-time adaptive simulation of cloth, and techniques are developed for the simulation of clothing on an animated character

    Analysis and Construction of Engaging Facial Forms and Expressions: Interdisciplinary Approaches from Art, Anatomy, Engineering, Cultural Studies, and Psychology

    Get PDF
    The topic of this dissertation is the anatomical, psychological, and cultural examination of a human face in order to effectively construct an anatomy-driven 3D virtual face customization and action model. In order to gain a broad perspective of all aspects of a face, theories and methodology from the fields of art, engineering, anatomy, psychology, and cultural studies have been analyzed and implemented. The computer generated facial customization and action model were designed based on the collected data. Using this customization system, culturally-specific attractive face in Korean popular culture, “kot-mi-nam (flower-like beautiful guy),” was modeled and analyzed as a case study. The “kot-mi-nam” phenomenon is overviewed in textual, visual, and contextual aspects, which reveals the gender- and sexuality-fluidity of its masculinity. The analysis and the actual development of the model organically co-construct each other requiring an interwoven process. Chapter 1 introduces anatomical studies of a human face, psychological theories of face recognition and an attractive face, and state-of-the-art face construction projects in the various fields. Chapter 2 and 3 present the Bezier curve-based 3D facial customization (BCFC) and Multi-layered Facial Action Model (MFAF) based on the analysis of human anatomy, to achieve a cost-effective yet realistic quality of facial animation without using 3D scanned data. In the experiments, results for the facial customization for gender, race, fat, and age showed that BCFC achieved enhanced performance of 25.20% compared to existing program Facegen , and 44.12% compared to Facial Studio. The experimental results also proved the realistic quality and effectiveness of MFAM compared with blend shape technique by enhancing 2.87% and 0.03% of facial area for happiness and anger expressions per second, respectively. In Chapter 4, according to the analysis based on BCFC, the 3D face of an average kot-mi-nam is close to gender neutral (male: 50.38%, female: 49.62%), and Caucasian (66.42-66.40%). Culturally-specific images can be misinterpreted in different cultures, due to their different languages, histories, and contexts. This research demonstrates that facial images can be affected by the cultural tastes of the makers and can also be interpreted differently by viewers in different cultures
    • …
    corecore