3,326 research outputs found

    PORTABLE HEART ATTACK WARNING SYSTEM BY MONITORING THE ST SEGMENT VIA SMARTPHONE ELECTROCARDIOGRAM PROCESSING

    Get PDF
    Cardiovascular disease (CVD) is the single leading cause of death in both developed and developing countries. The most deadly CVD is heart attack, which 7,900,000 Americans suffer each year, and 16% of cases are fatal. The Electrocardiogram (ECG) is the most widely adopted clinical tool to diagnose and assess the risk of CVD. Early diagnosis of heart attacks, by detecting abnormal ST segments within one hour of the onset of symptoms, is necessary for successful treatment. In clinical settings, resting ECGs are used to monitor patients automatically. However, given the sporadic nature of heart attacks, it is unlikely that the patient will be in a clinical setting at the onset of a heart attack. While Holter-based portable monitoring solutions offer 24 to 48-hour ECG recording, they lack the capability of providing any real-time feedback for the thousands of heart beats they record, which must be tediously analyzed offline.Processing ECG signals on a smartphone-based platform would unite the portability of Holter monitors and the real-time processing capability of state-of-the-art resting ECG machines to provide an assistive diagnosis for early heart attack warning. Furthermore, smartphones serve as an ideal platform for telemedicine and alert systems and have a portable form factor. To detect heart attacks via ECG processing, a real-time, accurate, context aware ST segment monitoring algorithm, based on principal component analysis and a support vector machine classifier is proposed and evaluated. Real-time feedback is provided by implementing a state-of-the-art, multilevel warning system ranging from audible notifications to text messages to points of contacts with the GPS location of the user. The smartphone test bed makes use of a novel, real-time verification system using a streaming database to analyze the strain of heart attack detection system under normal phone operation. Furthermore, the entire system is prototyped and fully functional, running on a smartphone to demonstrate the real-time, portable functionality of the platform. Experimental results show that a classification accuracy of 96% for ST segment elevation of individual beats can be achieved and all ST episodes were correctly detected during testing with the European ST database

    Symmetry-Adapted Machine Learning for Information Security

    Get PDF
    Symmetry-adapted machine learning has shown encouraging ability to mitigate the security risks in information and communication technology (ICT) systems. It is a subset of artificial intelligence (AI) that relies on the principles of processing future events by learning past events or historical data. The autonomous nature of symmetry-adapted machine learning supports effective data processing and analysis for security detection in ICT systems without the interference of human authorities. Many industries are developing machine-learning-adapted solutions to support security for smart hardware, distributed computing, and the cloud. In our Special Issue book, we focus on the deployment of symmetry-adapted machine learning for information security in various application areas. This security approach can support effective methods to handle the dynamic nature of security attacks by extraction and analysis of data to identify hidden patterns of data. The main topics of this Issue include malware classification, an intrusion detection system, image watermarking, color image watermarking, battlefield target aggregation behavior recognition model, IP camera, Internet of Things (IoT) security, service function chain, indoor positioning system, and crypto-analysis

    ECG based Prediction Model for Cardiac-Related Diseases using Machine Learning Techniques

    Get PDF
    This dissertation presents research on the construction of predictive models for health conditions through the application of Artificial Intelligence methods. The work is thus focused on the prediction, in the short and long term, of Atrial Fibrillation conditions through the analysis of Electrocardiography exams, with the use of several techniques to reduce noise and interference, as well as their representation through spectrograms and their application in Artificial Intelligence models, specifically Deep Learning. The training and testing processes of the models made use of a publicly available database. In its two approaches, predictive algorithms were obtained with an accuracy of 96.73% for a short horizon prediction and 96.52% for long Atrial Fibrillation prediction horizon. The main objectives of this dissertation are thus the study of works already carried out in the area during the last decade, to present a new methodology of prediction of the presented condition, as well as to present and discuss its results, including suggestions for improvement for future development.Esta dissertação descreve a construção de modelos preditivos de condições de saúde através de aplicação de métodos de Inteligência Artificial. O trabalho é assim focado na predição, a curto e longo prazo, de condições de Fibrilhação Auricular através da análise de exames de Eletrocardiografia, com a utilização de diversas técnicas de redução de ruído e de interferência, bem como a sua representação através de espectrogramas e sua aplicação em modelos de Inteligência Artificial, concretamente de Aprendizagem Profunda (Deep Learning na língua inglesa). Os processos de treino e teste dos modelos obtidos recorreram a uma base de dados publicamente disponível. Nas suas duas abordagens, foram obtidos algoritmos preditivos com uma precisão de 96.73% para uma predição de curto horizonte e 96.52% para longo horizonte de predição de Fibrilhação Auricular. Os objetivos principais da presente dissertação são assim o estudo de trabalhos já realizados na área durante a última década, apresentar uma nova metodologia de predição da condição apresentada, bem como apresentar e discutir os seus resultados, incluindo sugestões de melhoria para futuro desenvolvimento

    Optimizing cybersecurity incident response decisions using deep reinforcement learning

    Get PDF
    The main purpose of this paper is to explore and investigate the role of deep reinforcement learning (DRL) in optimizing the post-alert incident response process in security incident and event management (SIEM) systems. Although machine learning is used at multiple levels of SIEM systems, the last mile decision process is often ignored. Few papers reported efforts regarding the use of DRL to improve the post-alert decision and incident response processes. All the reported efforts applied only shallow (traditional) machine learning approaches to solve the problem. This paper explores the possibility of solving the problem using DRL approaches. The main attraction of DRL models is their ability to make accurate decisions based on live streams of data without the need for prior training, and they proved to be very successful in other fields of applications. Using standard datasets, a number of experiments have been conducted using different DRL configurations The results showed that DRL models can provide highly accurate decisions without the need for prior training

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    A Review of Rule Learning Based Intrusion Detection Systems and Their Prospects in Smart Grids

    Get PDF

    A Jamming Attacks Detection Approach Based on CNN based Quantum Leap Method for Wireless Sensor Network

    Get PDF
    The wireless sensor network is the most significant largest communication device. WSN has been interfacing with various wireless applications. Because the wireless application needs faster communication and less interruption, the main problem of jamming attacks on wireless networks is that jamming attack detection using various machine learning methods has been used. The reasons for jamming detection may be user behaviour-based and network traffic and energy consumption. The previous machine learning system could not present the jamming attack detection accuracy because the feature selection model of Chi-Squared didn’t perform well for jamming attack detections which determined takes a large dataset to be classified to find the high accuracy for jamming attack detection. To resolve this problem, propose a CNN-based quantum leap method that detects high accuracy for jamming attack detections the WSN-DS dataset collected by the Kaggle repository. Pre-processing using the Z-score Normalization technique will be applied, performing data deviations and assessments from the dataset, and collecting data and checking or evaluating data. Fisher’s Score is used to select the optimal feature of a jamming attack. Finally, the proposed CNN-based quantum leap is used to classify the jamming attacks. The CNN-based quantum leap simulation shows the output for jamming attacks with high precision, high detection, and low false alarm detection
    corecore