2,943 research outputs found

    Representation of Samba dance gestures, using a multi-modal analysis approach

    Get PDF
    In this paper we propose an approach for the representation of dance gestures in Samba dance. This representation is based on a video analysis of body movements, carried out from the viewpoint of the musical meter. Our method provides the periods, a measure of energy and a visual representation of periodic movement in dance. The method is applied to a limited universe of Samba dances and music, which is used to illustrate the usefulness of the approach

    Sea Ice Extraction via Remote Sensed Imagery: Algorithms, Datasets, Applications and Challenges

    Full text link
    The deep learning, which is a dominating technique in artificial intelligence, has completely changed the image understanding over the past decade. As a consequence, the sea ice extraction (SIE) problem has reached a new era. We present a comprehensive review of four important aspects of SIE, including algorithms, datasets, applications, and the future trends. Our review focuses on researches published from 2016 to the present, with a specific focus on deep learning-based approaches in the last five years. We divided all relegated algorithms into 3 categories, including classical image segmentation approach, machine learning-based approach and deep learning-based methods. We reviewed the accessible ice datasets including SAR-based datasets, the optical-based datasets and others. The applications are presented in 4 aspects including climate research, navigation, geographic information systems (GIS) production and others. It also provides insightful observations and inspiring future research directions.Comment: 24 pages, 6 figure

    Spatiotemporal oriented energies for spacetime stereo

    Full text link
    This paper presents a novel approach to recovering tem-porally coherent estimates of 3D structure of a dynamic scene from a sequence of binocular stereo images. The approach is based on matching spatiotemporal orientation distributions between left and right temporal image streams, which encapsulates both local spatial and temporal struc-ture for disparity estimation. By capturing spatial and tem-poral structure in this unified fashion, both sources of in-formation combine to yield disparity estimates that are nat-urally temporal coherent, while helping to resolve matches that might be ambiguous when either source is considered alone. Further, by allowing subsets of the orientation mea-surements to support different disparity estimates, an ap-proach to recovering multilayer disparity from spacetime stereo is realized. The approach has been implemented with real-time performance on commodity GPUs. Empir-ical evaluation shows that the approach yields qualitatively and quantitatively superior disparity estimates in compari-son to various alternative approaches, including the ability to provide accurate multilayer estimates in the presence of (semi)transparent and specular surfaces. 1

    The Role of Early Recurrence in Improving Visual Representations

    Get PDF
    This dissertation proposes a computational model of early vision with recurrence, termed as early recurrence. The idea is motivated from the research of the primate vision. Specifically, the proposed model relies on the following four observations. 1) The primate visual system includes two main visual pathways: the dorsal pathway and the ventral pathway; 2) The two pathways respond to different visual features; 3) The neurons of the dorsal pathway conduct visual information faster than that of the neurons of the ventral pathway; 4) There are lower-level feedback connections from the dorsal pathway to the ventral pathway. As such, the primate visual system may implement a recurrent mechanism to improve visual representations of the ventral pathway. Our work starts from a comprehensive review of the literature, based on which a conceptualization of early recurrence is proposed. Early recurrence manifests itself as a form of surround suppression. We propose that early recurrence is capable of refining the ventral processing using results of the dorsal processing. Our work further defines a set of computational components to formalize early recurrence. Although we do not intend to model the true nature of biology, to verify that the proposed computation is biologically consistent, we have applied the model to simulate a neurophysiological experiment of a bar-and-checkerboard and a psychological experiment involving a moving contour illusion. Simulation results indicated that the proposed computation behaviourally reproduces the original observations. The ultimate goal of this work is to investigate whether the proposal is capable of improving computer vision applications. To do this, we have applied the model to a variety of applications, including visual saliency and contour detection. Based on comparisons against the state-of-the-art, we conclude that the proposed model of early recurrence sheds light on a generally applicable yet lightweight approach to boost real-life application performance

    Neural networks application to divergence-based passive ranging

    Get PDF
    The purpose of this report is to summarize the state of knowledge and outline the planned work in divergence-based/neural networks approach to the problem of passive ranging derived from optical flow. Work in this and closely related areas is reviewed in order to provide the necessary background for further developments. New ideas about devising a monocular passive-ranging system are then introduced. It is shown that image-plan divergence is independent of image-plan location with respect to the focus of expansion and of camera maneuvers because it directly measures the object's expansion which, in turn, is related to the time-to-collision. Thus, a divergence-based method has the potential of providing a reliable range complementing other monocular passive-ranging methods which encounter difficulties in image areas close to the focus of expansion. Image-plan divergence can be thought of as some spatial/temporal pattern. A neural network realization was chosen for this task because neural networks have generally performed well in various other pattern recognition applications. The main goal of this work is to teach a neural network to derive the divergence from the imagery

    Sensory coding in supragranular cells of the vibrissal cortex in anesthetized and awake mice

    Get PDF
    Sensory perception entails reliable representation of the external stimuli as impulse activity of individual neurons (i.e. spikes) and neuronal populations in the sensory area. An ongoing challenge in neuroscience is to identify and characterize the features of the stimuli which are relevant to a specific sensory modality and neuronal strategies to effectively and efficiently encode those features. It is widely hypothesized that the neuronal populations employ “sparse coding” strategies to optimize the stimulus representations with a low energetic cost (i.e. low impulse activity). In the past two decades, a wealth of experimental evidence has supported this hypothesis by showing spatiotemporally sparse activity in sensory area. Despite numerous studies, the extent of sparse coding and its underlying mechanisms are not fully understood, especially in primary vibrissal somatosensory cortex (vS1), which is a key model system in sensory neuroscience. Importantly, it is not clear yet whether sparse activation of supragranular vS1 is due to insufficient synaptic input to the majority of the cells or the absence of effective stimulus features. In this thesis, first we asked how the choice of stimulus could affect the degree of sparseness and/or the overall fraction of the responsive vS1 neurons. We presented whisker deflections spanning a broad range of intensities, including “standard stimuli” and a high-velocity, “sharp” stimulus, which simulated the fast slip events that occur during whisker mediated object palpation. We used whole-cell and cell-attached recording and calcium imaging to characterize the neuronal responses to these stimuli. Consistent with previous literature, whole-cell recording revealed a sparse response to the standard range of velocities: although all recorded cells showed tuning to velocity in their postsynaptic potentials, only a small fraction produced stimulus-evoked spikes. In contrast, the sharp stimulus evoked reliable spiking in a large fraction of regular spiking neurons in the supragranular vS1. Spiking responses to the sharp stimulus were binary and precisely timed, with minimum trial-to-trial variability. Interestingly, we also observed that the sharp stimulus produced a consistent and significant reduction in action potential threshold. In the second step we asked whether the stimulus dependent sparse and dense activations we found in anesthetized condition would generalize to the awake condition. We employed cell-attached recordings in head-fixed awake mice to explore the degree of sparseness in awake cortex. Although, stimuli delivered by a piezo-electric actuator evoked significant response in a small fraction of regular spiking supragranular neurons (16%-29%), we observed that a majority of neurons (84%) were driven by manual probing of whiskers. Our results demonstrate that despite sparse activity, the majority of neurons in the superficial layers of vS1 contribute to coding by representing a specific feature of the tactile stimulus. Thesis outline: Chapter 1 provides a review of the current knowledge on sparse coding and an overview of the whisker-sensory pathway. Chapter 2 represents our published results regarding sparse and dense coding in vS1 of anesthetized mice (Ranjbar-Slamloo and Arabzadeh 2017). Chapter 3 represents our pending manuscript with results obtained with piezo and manual stimulation in awake mice. Finally, in Chapter 4 we discuss and conclude our findings in the context of the literature. The appendix provides unpublished results related to Chapter 2. This section is referenced in the final chapter for further discussion
    corecore