161,782 research outputs found

    Honeycomb vs. Foam: Evaluating a Potential Upgrade to ISS Module Shielding for Micrometeoroids and Orbital Debris

    Get PDF
    The presence of a honeycomb core in a multi-wall shielding configuration for protection against micrometeoroid and orbital debris (MMOD) particle impacts at hypervelocity is generally considered to be detrimental as the cell walls act to restrict fragment cloud expansion, creating a more concentrated load on the shield rear wall. However, mission requirements often prevent the inclusion of a dedicated MMOD shield, and as such, structural honeycomb sandwich panels are amongst the most prevalent shield types. Open cell metallic foams are a relatively new material with novel mechanical and thermal properties that have shown promising results in preliminary hypervelocity impact shielding evaluations. In this study, an ISS-representative MMOD shielding configuration has been modified to evaluate the potential performance enhancement gained through the substitution of honeycomb for open cell foam. The baseline shielding configuration consists of a double mesh outer layer, two honeycomb sandwich panels, and an aluminum rear wall. In the modified configuration the two honeycomb cores are replaced by open-cell foam. To compensate for the heavier core material, facesheets have been removed from the second sandwich panel in the modified configuration. A total of 19 tests on the double layer honeycomb and double layer foam configurations are reported. For comparable mechanical and thermal performance, the foam modifications were shown to provide a 15% improvement in critical projectile diameter at low velocities (i.e. 3 km/s) and a 3% increase at high velocities (i.e. 7 km/s) for normal impact. With increasing obliquity, the performance enhancement was predicted to increase, up to a 29% improvement at 60 (low velocity). Ballistic limit equations have been developed for the new configuration, and consider the mass of each individual shield component in order to maintain validity in the event of minor configuration modifications. Previously identified weaknesses of open cell foams for hypervelocity impact shielding such as large projectile diameters, low velocities, and high degrees of impact obliquity have all been investigated, and found to be negligible for the double-layer configuration

    Advanced magneto-optical microscopy: Imaging from picoseconds to centimeters - imaging spin waves and temperature distributions (invited)

    Get PDF
    © 2016 Author(s).Recent developments in the observation of magnetic domains and domain walls by wide-field optical microscopy based on the magneto-optical Kerr, Faraday, Voigt, and Gradient effect are reviewed. Emphasis is given to the existence of higher order magneto-optical effects for advanced magnetic imaging. Fundamental concepts and advances in methodology are discussed that allow for imaging of magnetic domains on various length and time scales. Time-resolved imaging of electric field induced domain wall rotation is shown. Visualization of magnetization dynamics down to picosecond temporal resolution for the imaging of spin-waves and magneto-optical multi-effect domain imaging techniques for obtaining vectorial information are demonstrated. Beyond conventional domain imaging, the use of a magneto-optical indicator technique for local temperature sensing is shown

    Tuning a binary ferromagnet into a multi-state synapse with spin-orbit torque induced plasticity

    Get PDF
    Inspired by ion-dominated synaptic plasticity in human brain, artificial synapses for neuromorphic computing adopt charge-related quantities as their weights. Despite the existing charge derived synaptic emulations, schemes of controlling electron spins in ferromagnetic devices have also attracted considerable interest due to their advantages of low energy consumption, unlimited endurance, and favorable CMOS compatibility. However, a generally applicable method of tuning a binary ferromagnet into a multi-state memory with pure spin-dominated synaptic plasticity in the absence of an external magnetic field is still missing. Here, we show how synaptic plasticity of a perpendicular ferromagnetic FM1 layer can be obtained when it is interlayer-exchange-coupled by another in-plane ferromagnetic FM2 layer, where a magnetic-field-free current-driven multi-state magnetization switching of FM1 in the Pt/FM1/Ta/FM2 structure is induced by spin-orbit torque. We use current pulses to set the perpendicular magnetization state which acts as the synapse weight, and demonstrate spintronic implementation of the excitatory/inhibitory postsynaptic potentials and spike timing-dependent plasticity. This functionality is made possible by the action of the in-plane interlayer exchange coupling field which leads to broadened, multi-state magnetic reversal characteristics. Numerical simulations, combined with investigations of a reference sample with a single perpendicular magnetized Pt/FM1/Ta structure, reveal that the broadening is due to the in-plane field component tuning the efficiency of the spin-orbit-torque to drive domain walls across a landscape of varying pinning potentials. The conventionally binary FM1 inside our Pt/FM1/Ta/FM2 structure with inherent in-plane coupling field is therefore tuned into a multi-state perpendicular ferromagnet and represents a synaptic emulator for neuromorphic computing.Comment: 37 pages with 11 figures, including 20 pages for manuscript and 17 pages for supplementary informatio

    Modelling the evolution of cerebral aneurysms: biomechanics, mechanobiology and multiscale modelling

    Get PDF
    Intracranial aneurysms (IAs) are abnormal dilatations of the cerebral vasculature. Computational modelling may shed light on the aetiology of the disease and lead to improved criteria to assist diagnostic decisions. We briefly review models of aneurysm evolution to date and present a novel fluid-solid-growth (FSG) framework for patient-specific modelling of IA evolution. We illustrate its application to 4 clinical cases depicting an IA. The section of arterial geometry containing the IA is removed and replaced with a cylindrical section: this represents an idealised section of healthy artery upon which IA evolution is simulated. The utilisation of patient-specific geometries enables G&R to be explicitly linked to physiologically realistic spatial distributions and magnitudes of haemodynamic stimuli. In this study, we investigate the hypothesis that elastin degradation is driven by locally low wall shear stress (WSS). In 3 out of 4 cases, the evolved model IA geometry is qualitatively similar to the corresponding in vivo IA geometry. This suggests some tentative support for the hypothesis that low WSS plays a role in the mechanobiology of IA evolution

    A parametric study of alternative support systems for cylindrical GRP storage vessels

    Get PDF
    Paper presenting a parametric study of alternative support systems for cylindrical GRP storage vessels

    Anisotropic fluctuations in turbulent sheared flows

    Get PDF
    An experimental analysis of small-scales anisotropic turbulent fluctuations has been performed in two different flows. We analyzed anisotropic properties of an homogeneous shear flows and of a turbulent boundary layer by means of two cross-wire probes to obtain multi-point multi-component measurements. Data are analyzed at changing inter-probe separation without the use of Taylor hypothesis. The results are consistent with the ``exponent-only'' scenario for universality, i.e. all experimental data can be fit by fixing the same set of anisotropic scaling exponents at changing only prefactors, for different shear intensities and boundary conditions.Comment: 11 pages, 8 figure
    • …