413,588 research outputs found

    Multi-Label Learning with Label Enhancement

    Full text link
    The task of multi-label learning is to predict a set of relevant labels for the unseen instance. Traditional multi-label learning algorithms treat each class label as a logical indicator of whether the corresponding label is relevant or irrelevant to the instance, i.e., +1 represents relevant to the instance and -1 represents irrelevant to the instance. Such label represented by -1 or +1 is called logical label. Logical label cannot reflect different label importance. However, for real-world multi-label learning problems, the importance of each possible label is generally different. For the real applications, it is difficult to obtain the label importance information directly. Thus we need a method to reconstruct the essential label importance from the logical multilabel data. To solve this problem, we assume that each multi-label instance is described by a vector of latent real-valued labels, which can reflect the importance of the corresponding labels. Such label is called numerical label. The process of reconstructing the numerical labels from the logical multi-label data via utilizing the logical label information and the topological structure in the feature space is called Label Enhancement. In this paper, we propose a novel multi-label learning framework called LEMLL, i.e., Label Enhanced Multi-Label Learning, which incorporates regression of the numerical labels and label enhancement into a unified framework. Extensive comparative studies validate that the performance of multi-label learning can be improved significantly with label enhancement and LEMLL can effectively reconstruct latent label importance information from logical multi-label data.Comment: ICDM 201

    Multi-Instance Multi-Label Learning

    Get PDF
    In this paper, we propose the MIML (Multi-Instance Multi-Label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning frameworks, the MIML framework is more convenient and natural for representing complicated objects which have multiple semantic meanings. To learn from MIML examples, we propose the MimlBoost and MimlSvm algorithms based on a simple degeneration strategy, and experiments show that solving problems involving complicated objects with multiple semantic meanings in the MIML framework can lead to good performance. Considering that the degeneration process may lose information, we propose the D-MimlSvm algorithm which tackles MIML problems directly in a regularization framework. Moreover, we show that even when we do not have access to the real objects and thus cannot capture more information from real objects by using the MIML representation, MIML is still useful. We propose the InsDif and SubCod algorithms. InsDif works by transforming single-instances into the MIML representation for learning, while SubCod works by transforming single-label examples into the MIML representation for learning. Experiments show that in some tasks they are able to achieve better performance than learning the single-instances or single-label examples directly.Comment: 64 pages, 10 figures; Artificial Intelligence, 201

    Large-Scale Multi-Label Learning with Incomplete Label Assignments

    Full text link
    Multi-label learning deals with the classification problems where each instance can be assigned with multiple labels simultaneously. Conventional multi-label learning approaches mainly focus on exploiting label correlations. It is usually assumed, explicitly or implicitly, that the label sets for training instances are fully labeled without any missing labels. However, in many real-world multi-label datasets, the label assignments for training instances can be incomplete. Some ground-truth labels can be missed by the labeler from the label set. This problem is especially typical when the number instances is very large, and the labeling cost is very high, which makes it almost impossible to get a fully labeled training set. In this paper, we study the problem of large-scale multi-label learning with incomplete label assignments. We propose an approach, called MPU, based upon positive and unlabeled stochastic gradient descent and stacked models. Unlike prior works, our method can effectively and efficiently consider missing labels and label correlations simultaneously, and is very scalable, that has linear time complexities over the size of the data. Extensive experiments on two real-world multi-label datasets show that our MPU model consistently outperform other commonly-used baselines

    Transductive Multi-label Zero-shot Learning

    Get PDF
    Zero-shot learning has received increasing interest as a means to alleviate the often prohibitive expense of annotating training data for large scale recognition problems. These methods have achieved great success via learning intermediate semantic representations in the form of attributes and more recently, semantic word vectors. However, they have thus far been constrained to the single-label case, in contrast to the growing popularity and importance of more realistic multi-label data. In this paper, for the first time, we investigate and formalise a general framework for multi-label zero-shot learning, addressing the unique challenge therein: how to exploit multi-label correlation at test time with no training data for those classes? In particular, we propose (1) a multi-output deep regression model to project an image into a semantic word space, which explicitly exploits the correlations in the intermediate semantic layer of word vectors; (2) a novel zero-shot learning algorithm for multi-label data that exploits the unique compositionality property of semantic word vector representations; and (3) a transductive learning strategy to enable the regression model learned from seen classes to generalise well to unseen classes. Our zero-shot learning experiments on a number of standard multi-label datasets demonstrate that our method outperforms a variety of baselines.Comment: 12 pages, 6 figures, Accepted to BMVC 2014 (oral
    corecore