3,851 research outputs found

    Exploring Connections Between Active Learning and Model Extraction

    Full text link
    Machine learning is being increasingly used by individuals, research institutions, and corporations. This has resulted in the surge of Machine Learning-as-a-Service (MLaaS) - cloud services that provide (a) tools and resources to learn the model, and (b) a user-friendly query interface to access the model. However, such MLaaS systems raise privacy concerns such as model extraction. In model extraction attacks, adversaries maliciously exploit the query interface to steal the model. More precisely, in a model extraction attack, a good approximation of a sensitive or proprietary model held by the server is extracted (i.e. learned) by a dishonest user who interacts with the server only via the query interface. This attack was introduced by Tramer et al. at the 2016 USENIX Security Symposium, where practical attacks for various models were shown. We believe that better understanding the efficacy of model extraction attacks is paramount to designing secure MLaaS systems. To that end, we take the first step by (a) formalizing model extraction and discussing possible defense strategies, and (b) drawing parallels between model extraction and established area of active learning. In particular, we show that recent advancements in the active learning domain can be used to implement powerful model extraction attacks, and investigate possible defense strategies

    Long and Short Memory Balancing in Visual Co-Tracking using Q-Learning

    Full text link
    Employing one or more additional classifiers to break the self-learning loop in tracing-by-detection has gained considerable attention. Most of such trackers merely utilize the redundancy to address the accumulating label error in the tracking loop, and suffer from high computational complexity as well as tracking challenges that may interrupt all classifiers (e.g. temporal occlusions). We propose the active co-tracking framework, in which the main classifier of the tracker labels samples of the video sequence, and only consults auxiliary classifier when it is uncertain. Based on the source of the uncertainty and the differences of two classifiers (e.g. accuracy, speed, update frequency, etc.), different policies should be taken to exchange the information between two classifiers. Here, we introduce a reinforcement learning approach to find the appropriate policy by considering the state of the tracker in a specific sequence. The proposed method yields promising results in comparison to the best tracking-by-detection approaches.Comment: Submitted to ICIP 201

    Rapid Adaptation with Conditionally Shifted Neurons

    Full text link
    We describe a mechanism by which artificial neural networks can learn rapid adaptation - the ability to adapt on the fly, with little data, to new tasks - that we call conditionally shifted neurons. We apply this mechanism in the framework of metalearning, where the aim is to replicate some of the flexibility of human learning in machines. Conditionally shifted neurons modify their activation values with task-specific shifts retrieved from a memory module, which is populated rapidly based on limited task experience. On metalearning benchmarks from the vision and language domains, models augmented with conditionally shifted neurons achieve state-of-the-art results.Comment: ICML 2018; Added: additional ablation and speed comparison with MetaNe

    A New Ensemble Learning Framework for 3D Biomedical Image Segmentation

    Full text link
    3D image segmentation plays an important role in biomedical image analysis. Many 2D and 3D deep learning models have achieved state-of-the-art segmentation performance on 3D biomedical image datasets. Yet, 2D and 3D models have their own strengths and weaknesses, and by unifying them together, one may be able to achieve more accurate results. In this paper, we propose a new ensemble learning framework for 3D biomedical image segmentation that combines the merits of 2D and 3D models. First, we develop a fully convolutional network based meta-learner to learn how to improve the results from 2D and 3D models (base-learners). Then, to minimize over-fitting for our sophisticated meta-learner, we devise a new training method that uses the results of the base-learners as multiple versions of "ground truths". Furthermore, since our new meta-learner training scheme does not depend on manual annotation, it can utilize abundant unlabeled 3D image data to further improve the model. Extensive experiments on two public datasets (the HVSMR 2016 Challenge dataset and the mouse piriform cortex dataset) show that our approach is effective under fully-supervised, semi-supervised, and transductive settings, and attains superior performance over state-of-the-art image segmentation methods.Comment: To appear in AAAI-2019. The first three authors contributed equally to the pape

    Privacy-preserving Active Learning on Sensitive Data for User Intent Classification

    Full text link
    Active learning holds promise of significantly reducing data annotation costs while maintaining reasonable model performance. However, it requires sending data to annotators for labeling. This presents a possible privacy leak when the training set includes sensitive user data. In this paper, we describe an approach for carrying out privacy preserving active learning with quantifiable guarantees. We evaluate our approach by showing the tradeoff between privacy, utility and annotation budget on a binary classification task in a active learning setting.Comment: To appear at PAL: Privacy-Enhancing Artificial Intelligence and Language Technologies as part of the AAAI Spring Symposium Series (AAAI-SSS 2019

    Meta-Learning Transferable Active Learning Policies by Deep Reinforcement Learning

    Full text link
    Active learning (AL) aims to enable training high performance classifiers with low annotation cost by predicting which subset of unlabelled instances would be most beneficial to label. The importance of AL has motivated extensive research, proposing a wide variety of manually designed AL algorithms with diverse theoretical and intuitive motivations. In contrast to this body of research, we propose to treat active learning algorithm design as a meta-learning problem and learn the best criterion from data. We model an active learning algorithm as a deep neural network that inputs the base learner state and the unlabelled point set and predicts the best point to annotate next. Training this active query policy network with reinforcement learning, produces the best non-myopic policy for a given dataset. The key challenge in achieving a general solution to AL then becomes that of learner generalisation, particularly across heterogeneous datasets. We propose a multi-task dataset-embedding approach that allows dataset-agnostic active learners to be trained. Our evaluation shows that AL algorithms trained in this way can directly generalise across diverse problems

    Learning and Optimization with Submodular Functions

    Full text link
    In many naturally occurring optimization problems one needs to ensure that the definition of the optimization problem lends itself to solutions that are tractable to compute. In cases where exact solutions cannot be computed tractably, it is beneficial to have strong guarantees on the tractable approximate solutions. In order operate under these criterion most optimization problems are cast under the umbrella of convexity or submodularity. In this report we will study design and optimization over a common class of functions called submodular functions. Set functions, and specifically submodular set functions, characterize a wide variety of naturally occurring optimization problems, and the property of submodularity of set functions has deep theoretical consequences with wide ranging applications. Informally, the property of submodularity of set functions concerns the intuitive "principle of diminishing returns. This property states that adding an element to a smaller set has more value than adding it to a larger set. Common examples of submodular monotone functions are entropies, concave functions of cardinality, and matroid rank functions; non-monotone examples include graph cuts, network flows, and mutual information. In this paper we will review the formal definition of submodularity; the optimization of submodular functions, both maximization and minimization; and finally discuss some applications in relation to learning and reasoning using submodular functions.Comment: Tech Report - USC Computer Science CS-599, Convex and Combinatorial Optimizatio

    Expert Training: Task Hardness Aware Meta-Learning for Few-Shot Classification

    Full text link
    Deep neural networks are highly effective when a large number of labeled samples are available but fail with few-shot classification tasks. Recently, meta-learning methods have received much attention, which train a meta-learner on massive additional tasks to gain the knowledge to instruct the few-shot classification. Usually, the training tasks are randomly sampled and performed indiscriminately, often making the meta-learner stuck into a bad local optimum. Some works in the optimization of deep neural networks have shown that a better arrangement of training data can make the classifier converge faster and perform better. Inspired by this idea, we propose an easy-to-hard expert meta-training strategy to arrange the training tasks properly, where easy tasks are preferred in the first phase, then, hard tasks are emphasized in the second phase. A task hardness aware module is designed and integrated into the training procedure to estimate the hardness of a task based on the distinguishability of its categories. In addition, we explore multiple hardness measurements including the semantic relation, the pairwise Euclidean distance, the Hausdorff distance, and the Hilbert-Schmidt independence criterion. Experimental results on the miniImageNet and tieredImageNetSketch datasets show that the meta-learners can obtain better results with our expert training strategy.Comment: 9 pages, 6 figure

    Learning to Optimize

    Full text link
    Algorithm design is a laborious process and often requires many iterations of ideation and validation. In this paper, we explore automating algorithm design and present a method to learn an optimization algorithm, which we believe to be the first method that can automatically discover a better algorithm. We approach this problem from a reinforcement learning perspective and represent any particular optimization algorithm as a policy. We learn an optimization algorithm using guided policy search and demonstrate that the resulting algorithm outperforms existing hand-engineered algorithms in terms of convergence speed and/or the final objective value.Comment: 9 pages, 3 figure

    Multi-Task Learning for Argumentation Mining

    Full text link
    Multi-task learning has recently become a very active field in deep learning research. In contrast to learning a single task in isolation, multiple tasks are learned at the same time, thereby utilizing the training signal of related tasks to improve the performance on the respective machine learning tasks. Related work shows various successes in different domains when applying this paradigm and this thesis extends the existing empirical results by evaluating multi-task learning in four different scenarios: argumentation mining, epistemic segmentation, argumentation component segmentation, and grapheme-to-phoneme conversion. We show that multi-task learning can, indeed, improve the performance compared to single-task learning in all these scenarios, but may also hurt the performance. Therefore, we investigate the reasons for successful and less successful applications of this paradigm and find that dataset properties such as entropy or the size of the label inventory are good indicators for a potential multi-task learning success and that multi-task learning is particularly useful if the task at hand suffers from data sparsity, i.e. a lack of training data. Moreover, multi-task learning is particularly effective for long input sequences in our experiments. We have observed this trend in all evaluated scenarios. Finally, we develop a highly configurable and extensible sequence tagging framework which supports multi-task learning to conduct our empirical experiments and to aid future research regarding the multi-task learning paradigm and natural language processing.Comment: Thesis for the M. Sc. Internet and Webbased Systems degree at Technische Universit\"at Darmstadt (Germany
    • …
    corecore