163 research outputs found

    A Novel Variable Precision Reduction Approach to Comprehensive Knowledge Systems

    Get PDF

    Hybrid dragonfly algorithm with neighbourhood component analysis and gradient tree boosting for crime rates modelling

    Get PDF
    In crime studies, crime rates time series prediction helps in strategic crime prevention formulation and decision making. Statistical models are commonly applied in predicting time series crime rates. However, the time series crime rates data are limited and mostly nonlinear. One limitation in the statistical models is that they are mainly linear and are only able to model linear relationships. Thus, this study proposed a time series crime prediction model that can handle nonlinear components as well as limited historical crime rates data. Recently, Artificial Intelligence (AI) models have been favoured as they are able to handle nonlinear and robust to small sample data components in crime rates. Hence, the proposed crime model implemented an artificial intelligence model namely Gradient Tree Boosting (GTB) in modelling the crime rates. The crime rates are modelled using the United States (US) annual crime rates of eight crime types with nine factors that influence the crime rates. Since GTB has no feature selection, this study proposed hybridisation of Neighbourhood Component Analysis (NCA) and GTB (NCA-GTB) in identifying significant factors that influence the crime rates. Also, it was found that both NCA and GTB are sensitive to input parameter. Thus, DA2-NCA-eGTB model was proposed to improve the NCA-GTB model. The DA2-NCA-eGTB model hybridised a metaheuristic optimisation algorithm namely Dragonfly Algorithm (DA) with NCA-GTB model to optimise NCA and GTB parameters. In addition, DA2-NCA-eGTB model also improved the accuracy of the NCA-GTB model by using Least Absolute Deviation (LAD) as the GTB loss function. The experimental result showed that DA2-NCA-eGTB model outperformed existing AI models in all eight modelled crime types. This was proven by the smaller values of Mean Absolute Percentage Error (MAPE), which was between 2.9195 and 18.7471. As a conclusion, the study showed that DA2-NCA-eGTB model is statistically significant in representing all crime types and it is able to handle the nonlinear component in limited crime rate data well

    Semantic feature reduction and hybrid feature selection for clustering of Arabic Web pages

    Get PDF
    In the literature, high-dimensional data reduces the efficiency of clustering algorithms. Clustering the Arabic text is challenging because semantics of the text involves deep semantic processing. To overcome the problems, the feature selection and reduction methods have become essential to select and identify the appropriate features in reducing high-dimensional space. There is a need to develop a suitable design for feature selection and reduction methods that would result in a more relevant, meaningful and reduced representation of the Arabic texts to ease the clustering process. The research developed three different methods for analyzing the features of the Arabic Web text. The first method is based on hybrid feature selection that selects the informative term representation within the Arabic Web pages. It incorporates three different feature selection methods known as Chi-square, Mutual Information and Term Frequency–Inverse Document Frequency to build a hybrid model. The second method is a latent document vectorization method used to represent the documents as the probability distribution in the vector space. It overcomes the problems of high-dimension by reducing the dimensional space. To extract the best features, two document vectorizer methods have been implemented, known as the Bayesian vectorizer and semantic vectorizer. The third method is an Arabic semantic feature analysis used to improve the capability of the Arabic Web analysis. It ensures a good design for the clustering method to optimize clustering ability when analysing these Web pages. This is done by overcoming the problems of term representation, semantic modeling and dimensional reduction. Different experiments were carried out with k-means clustering on two different data sets. The methods provided solutions to reduce high-dimensional data and identify the semantic features shared between similar Arabic Web pages that are grouped together in one cluster. These pages were clustered according to the semantic similarities between them whereby they have a small Davies–Bouldin index and high accuracy. This study contributed to research in clustering algorithm by developing three methods to identify the most relevant features of the Arabic Web pages

    Intelligent Sensors for Human Motion Analysis

    Get PDF
    The book, "Intelligent Sensors for Human Motion Analysis," contains 17 articles published in the Special Issue of the Sensors journal. These articles deal with many aspects related to the analysis of human movement. New techniques and methods for pose estimation, gait recognition, and fall detection have been proposed and verified. Some of them will trigger further research, and some may become the backbone of commercial systems

    Automatic assistants for database exploration

    Get PDF

    Recent Developments in Smart Healthcare

    Get PDF
    Medicine is undergoing a sector-wide transformation thanks to the advances in computing and networking technologies. Healthcare is changing from reactive and hospital-centered to preventive and personalized, from disease focused to well-being centered. In essence, the healthcare systems, as well as fundamental medicine research, are becoming smarter. We anticipate significant improvements in areas ranging from molecular genomics and proteomics to decision support for healthcare professionals through big data analytics, to support behavior changes through technology-enabled self-management, and social and motivational support. Furthermore, with smart technologies, healthcare delivery could also be made more efficient, higher quality, and lower cost. In this special issue, we received a total 45 submissions and accepted 19 outstanding papers that roughly span across several interesting topics on smart healthcare, including public health, health information technology (Health IT), and smart medicine

    Minority target class detection for short text classification

    Get PDF

    An Approach to Guide Users Towards Less Revealing Internet Browsers

    Get PDF
    When browsing the Internet, HTTP headers enable both clients and servers send extra data in their requests or responses such as the User-Agent string. This string contains information related to the sender’s device, browser, and operating system. Previous research has shown that there are numerous privacy and security risks result from exposing sensitive information in the User-Agent string. For example, it enables device and browser fingerprinting and user tracking and identification. Our large analysis of thousands of User-Agent strings shows that browsers differ tremendously in the amount of information they include in their User-Agent strings. As such, our work aims at guiding users towards using less exposing browsers. In doing so, we propose to assign an exposure score to browsers based on the information they expose and vulnerability records. Thus, our contribution in this work is as follows: first, provide a full implementation that is ready to be deployed and used by users. Second, conduct a user study to identify the effectiveness and limitations of our proposed approach. Our implementation is based on using more than 52 thousand unique browsers. Our performance and validation analysis show that our solution is accurate and efficient. The source code and data set are publicly available and the solution has been deployed

    Digital Forensics AI: on Practicality, Optimality, and Interpretability of Digital Evidence Mining Techniques

    Get PDF
    Digital forensics as a field has progressed alongside technological advancements over the years, just as digital devices have gotten more robust and sophisticated. However, criminals and attackers have devised means for exploiting the vulnerabilities or sophistication of these devices to carry out malicious activities in unprecedented ways. Their belief is that electronic crimes can be committed without identities being revealed or trails being established. Several applications of artificial intelligence (AI) have demonstrated interesting and promising solutions to seemingly intractable societal challenges. This thesis aims to advance the concept of applying AI techniques in digital forensic investigation. Our approach involves experimenting with a complex case scenario in which suspects corresponded by e-mail and deleted, suspiciously, certain communications, presumably to conceal evidence. The purpose is to demonstrate the efficacy of Artificial Neural Networks (ANN) in learning and detecting communication patterns over time, and then predicting the possibility of missing communication(s) along with potential topics of discussion. To do this, we developed a novel approach and included other existing models. The accuracy of our results is evaluated, and their performance on previously unseen data is measured. Second, we proposed conceptualizing the term “Digital Forensics AI” (DFAI) to formalize the application of AI in digital forensics. The objective is to highlight the instruments that facilitate the best evidential outcomes and presentation mechanisms that are adaptable to the probabilistic output of AI models. Finally, we enhanced our notion in support of the application of AI in digital forensics by recommending methodologies and approaches for bridging trust gaps through the development of interpretable models that facilitate the admissibility of digital evidence in legal proceedings
    • …
    corecore