5,155 research outputs found

    Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels

    Get PDF
    A method is proposed, called channel polarization, to construct code sequences that achieve the symmetric capacity I(W)I(W) of any given binary-input discrete memoryless channel (B-DMC) WW. The symmetric capacity is the highest rate achievable subject to using the input letters of the channel with equal probability. Channel polarization refers to the fact that it is possible to synthesize, out of NN independent copies of a given B-DMC WW, a second set of NN binary-input channels {WN(i):1≀i≀N}\{W_N^{(i)}:1\le i\le N\} such that, as NN becomes large, the fraction of indices ii for which I(WN(i))I(W_N^{(i)}) is near 1 approaches I(W)I(W) and the fraction for which I(WN(i))I(W_N^{(i)}) is near 0 approaches 1βˆ’I(W)1-I(W). The polarized channels {WN(i)}\{W_N^{(i)}\} are well-conditioned for channel coding: one need only send data at rate 1 through those with capacity near 1 and at rate 0 through the remaining. Codes constructed on the basis of this idea are called polar codes. The paper proves that, given any B-DMC WW with I(W)>0I(W)>0 and any target rate R<I(W)R < I(W), there exists a sequence of polar codes {Cn;nβ‰₯1}\{{\mathscr C}_n;n\ge 1\} such that Cn{\mathscr C}_n has block-length N=2nN=2^n, rate β‰₯R\ge R, and probability of block error under successive cancellation decoding bounded as P_{e}(N,R) \le \bigoh(N^{-\frac14}) independently of the code rate. This performance is achievable by encoders and decoders with complexity O(Nlog⁑N)O(N\log N) for each.Comment: The version which appears in the IEEE Transactions on Information Theory, July 200
    • …
    corecore