23 research outputs found

    Realization of Low-Voltage Modified CBTA and Design of Cascadable Current-Mode All-Pass Filter

    Get PDF
    In this paper, a low voltage modified current backward transconductance amplifier (MCBTA) and a novel first-order current-mode (CM) all-pass filter are presented. The MCBTA can operate with ±0.9 V supply voltage and the total power consumption of MCBTA is 1.27 mW. The presented all-pass filter employs single MCBTA, a grounded resistor and a grounded capacitor. The circuit possesses low input and high output impedances which make it ideal for current-mode systems. The presented all-pass filter circuit can be made electronically tunable due to the bias current of the MCBTA. Non-ideal study along with simulation results are given for validation purpose. Further, an nth-order cascadable all-pass filter is also presented. It uses n MCBTAs, n grounded resistors and n grounded capacitors. The performance of the proposed circuits is demonstrated by using PSPICE simulations based on the 0.18 ”m TSMC level-7 CMOS technology parameters

    Current-Processing Current-Controlled Universal Biquad Filter

    Get PDF
    This paper presents a current-processing current-controlled universal biquad filter. The proposed filter employs only two current controlled current conveyor transconductance amplifiers (CCCCTAs) and two grounded capacitors. The proposed configuration can be used either as a single input three outputs (SITO) or as three inputs single output (TISO) filter. The circuit realizes all five different standard filter functions i.e. low-pass (LP), band-pass (BP), high-pass (HP), band-reject (BR) and all-pass (AP). The circuit enjoys electronic control of quality factor through the single bias current without disturbing pole frequency. Effects of non-idealities are also discussed. The circuit exhibits low active and passive sensitivity figures. The validity of proposed filter is verified through computer simulations using PSPICE

    A Novel (DDCC-SFG)-Based Systematic Design Technique of Active Filters

    Get PDF
    This paper proposes a novel idea for the synthesis of active filters that is based on the use of signal-flow graph (SFG) stamps of differential difference current conveyors (DDCCs). On the basis of an RLC passive network or a filter symbolic transfer function, an equivalent SFG is constructed. DDCCs’ SFGs are identified inside the constructed ‘active’ graph, and thus the equivalent circuit can be easily synthesized. We show that the DDCC and its ‘derivatives’, i.e. differential voltage current conveyors and the conventional current conveyors, are the main basic building blocks in such design. The practicability of the proposed technique is showcased via three application examples. Spice simulations are given to show the viability of the proposed technique

    Single CFTA Based Current-Mode Universal Biquad Filter

    Get PDF

    ECCCII-Based Current-Mode Universal Filter with Orthogonal Control of w_o and Q

    Get PDF
    This paper presents a new current-mode current-controlled four-input five-output universal filter employing one current-controlled current conveyor (CCCII), one electronically tunable CCCII and two grounded capacitors. The proposed configuration provides lowpass, bandpass, highpass, bandstop and allpass current responses that taken from the high-output impedance terminals, which enable easy cascadability of the current-mode operation. The filter also offers both orthogonal and electronic controls of the natural frequency and the quality factor through adjusting the bias current of the CCCIIs. For realizing all the filter responses, the proposed filter does not require passive component-matching condition and both active and passive sensitivities are low. In addition, a new current-mode current-controlled single-input five-output universal filter can be achieved by using an additional multiple-output minus-type CCCII. The proposed filter is simulated using PSPICE simulations to confirm the theoretical analysis

    DV-EXCCCII Based Resistor-Less Current-Mode Universal Biquadratic Filter

    Get PDF
    This study aims to present a new resistor-less current-mode multi-input single-output universal filter. The current-mode’s design approach is used to obtain the proposed circuit. This circuit employs a single differential voltage extra-X current controlled current conveyor (DV-EXCCCII) and two grounded capacitors. This multifunction filter circuit offers low-pass, high-pass, all-pass, band-pass, and band-reject filters at a single output terminal without passive component matching constraints. The same circuit topology can obtain all second-order filter functions with different input conditions. The proposed circuit design is electronically adjustable with the bias current of DV-EXCCCII. Because of its high output impedance, this arrangement is suitable for cascading other current-mode circuits. The proposed circuit is simulated by Cadence Spectre with 0.18 ”m UMC CMOS technology process parameters at ± 0.9 V supply voltages. The simulation results agree well with the theoretical concept of the proposed circuit

    Cascadable Current-Mode First-Order All-Pass Filter Based on Minimal Components

    Get PDF
    A novel current-mode first-order all-pass filter with low input and high output impedance feature is presented. The circuit realization employs a single dual-X-second-generation current conveyor, one grounded capacitor, and one grounded resistor, which is a minimum component realization. The theoretical results are verified using PSPICE simulation program with TSMC 0.35 Όm CMOS process parameters

    Voltage Differencing Current Conveyor Based Voltage-Mode and Current-Mode Universal Biquad Filters with Electronic Tuning Facility

    Get PDF
    The objective of this study is to present four new universal biquad filters, two voltage-mode multi-input-single-output (MISO), and two current-mode single-input-multi-output (SIMO). The filters employ one voltage differencing current conveyor (VDCC) as an active element and two capacitors along with two resistors as passive elements. All the five filter responses, i.e., high-pass, low-pass, band-pass, band-stop, and all-pass responses, are obtained from the same circuit topology. Moreover, the pole frequency and quality factor are independently tunable. Additionally, they do not require any double/inverted input signals for response realization. Furthermore, they enjoy low active and passive sensitivities. Various regular analyses support the design ideas. The functionality of the presented filters are tested by PSPICE simulations using TSMC 0.18 ”m technology parameters with ± 0.9 V supply voltage. The circuits are also justified experimentally by creating the VDCC block using commercially available OPA860 ICs. The experimental and simulation results agree well with the theoretically predicted results

    Reconfigurable of current-mode differentiator and integrator based-on current conveyor transconductance amplifiers

    Get PDF
    The reconfigurable of the differentiator and integrator based on current conveyor transconductance amplifiers (CCTAs) have been presented in this paper. The proposed configurations are provided with two CCTAs and grounded elements. The configurations can be operated in the differentiator and integrator by selecting external passive elements. The input and output currents have low and high impedances, respectively; therefore, the configurations can be cascaded without additional current buffer. The proposed configurations can be electronically tuned by external direct current (DC) bias currents, and it also has slight fluctuation with temperature. An application of universal filter is demonstrated to confirm the ability of the proposed configurations. The results of simulation with Pspice program are accordance with the theoretical analysis
    corecore