2,720 research outputs found

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Architecture, Protocols, and Algorithms for Location-Aware Services in Beyond 5G Networks

    Full text link
    The automotive and railway industries are rapidly transforming with a strong drive towards automation and digitalization, with the goal of increased convenience, safety, efficiency, and sustainability. Since assisted and fully automated automotive and train transport services increasingly rely on vehicle-to-everything communications, and high-accuracy real-time positioning, it is necessary to continuously maintain high-accuracy localization, even in occlusion scenes such as tunnels, urban canyons, or areas covered by dense foliage. In this paper, we review the 5G positioning framework of the 3rd Generation Partnership Project in terms of methods and architecture and propose enhancements to meet the stringent requirements imposed by the transport industry. In particular, we highlight the benefit of fusing cellular and sensor measurements and discuss required architecture and protocol support for achieving this at the network side. We also propose a positioning framework to fuse cellular network measurements with measurements by onboard sensors. We illustrate the viability of the proposed fusion-based positioning approach using a numerical example.Comment: 7 pages, 5 figures, accepted for publication in IEEE Communications Standards Magazin

    3D-LIDAR Based Object Detection and Tracking on the Edge of IoT for Railway Level Crossing

    Get PDF
    Object detection is an essential technology for surveillance systems, particularly in areas with a high risk of accidents such as railway level crossings. To prevent future collisions, the system must detect and track any object that passes through the monitored area with high accuracy, and this process must be performed fulfilling real-time specifications. In this work, an edge IoT HW platform implementation capable of detecting and tracking objects in a railway level crossing scenario is proposed. The response of the system has to be calculated and sent from the proposed IoT platform to the train, so as to trigger a warning action to avoid a possible collision. The system uses a low-resolution 3D 16-channel LIDAR as a sensor that provides an accurate point cloud map with a large amount of data. The element used to process the information is a custom embedded edge platform with low computing resources and low-power consumption. This processing element is located as close as possible to the sensor, where data is generated to improve latency, privacy, and avoid bandwidth limitations, compared to performing processing in the cloud. Additionally, lightweight object detection and tracking algorithm is proposed in this work to process a large amount of information provided by the LIDAR, allowing to reach real-time specifications. The proposed method is validated quantitatively by carrying out implementation on a car road, emulating a railway level crossing

    A deep learning approach towards railway safety risk assessment

    Get PDF
    Railway stations are essential aspects of railway systems, and they play a vital role in public daily life. Various types of AI technology have been utilised in many fields to ensure the safety of people and their assets. In this paper, we propose a novel framework that uses computer vision and pattern recognition to perform risk management in railway systems in which a convolutional neural network (CNN) is applied as a supervised machine learning model to identify risks. However, risk management in railway stations is challenging because stations feature dynamic and complex conditions. Despite extensive efforts by industry associations and researchers to reduce the number of accidents and injuries in this field, such incidents still occur. The proposed model offers a beneficial method for obtaining more accurate motion data, and it detects adverse conditions as soon as possible by capturing fall, slip and trip (FST) events in the stations that represent high-risk outcomes. The framework of the presented method is generalisable to a wide range of locations and to additional types of risks
    corecore