3,884 research outputs found

    AMC: Attention guided Multi-modal Correlation Learning for Image Search

    Full text link
    Given a user's query, traditional image search systems rank images according to its relevance to a single modality (e.g., image content or surrounding text). Nowadays, an increasing number of images on the Internet are available with associated meta data in rich modalities (e.g., titles, keywords, tags, etc.), which can be exploited for better similarity measure with queries. In this paper, we leverage visual and textual modalities for image search by learning their correlation with input query. According to the intent of query, attention mechanism can be introduced to adaptively balance the importance of different modalities. We propose a novel Attention guided Multi-modal Correlation (AMC) learning method which consists of a jointly learned hierarchy of intra and inter-attention networks. Conditioned on query's intent, intra-attention networks (i.e., visual intra-attention network and language intra-attention network) attend on informative parts within each modality; a multi-modal inter-attention network promotes the importance of the most query-relevant modalities. In experiments, we evaluate AMC models on the search logs from two real world image search engines and show a significant boost on the ranking of user-clicked images in search results. Additionally, we extend AMC models to caption ranking task on COCO dataset and achieve competitive results compared with recent state-of-the-arts.Comment: CVPR 201

    Generalized Max Pooling

    Full text link
    State-of-the-art patch-based image representations involve a pooling operation that aggregates statistics computed from local descriptors. Standard pooling operations include sum- and max-pooling. Sum-pooling lacks discriminability because the resulting representation is strongly influenced by frequent yet often uninformative descriptors, but only weakly influenced by rare yet potentially highly-informative ones. Max-pooling equalizes the influence of frequent and rare descriptors but is only applicable to representations that rely on count statistics, such as the bag-of-visual-words (BOV) and its soft- and sparse-coding extensions. We propose a novel pooling mechanism that achieves the same effect as max-pooling but is applicable beyond the BOV and especially to the state-of-the-art Fisher Vector -- hence the name Generalized Max Pooling (GMP). It involves equalizing the similarity between each patch and the pooled representation, which is shown to be equivalent to re-weighting the per-patch statistics. We show on five public image classification benchmarks that the proposed GMP can lead to significant performance gains with respect to heuristic alternatives.Comment: (to appear) CVPR 2014 - IEEE Conference on Computer Vision & Pattern Recognition (2014

    Region-DH: Region-based Deep Hashing for Multi-Instance Aware Image Retrieval

    Get PDF
    This paper introduces an instance-aware hashing approach Region-DH for large-scale multi-label image retrieval. The accurate object bounds can significantly increase the hashing performance of instance features. We design a unified deep neural network that simultaneously localizes and recognizes objects while learning the hash functions for binary codes. Region-DH focuses on recognizing objects and building compact binary codes that represent more foreground patterns. Region-DH can flexibly be used with existing deep neural networks or more complex object detectors for image hashing. Extensive experiments are performed on benchmark datasets and show the efficacy and robustness of the proposed Region-DH model
    • …
    corecore