123 research outputs found

    Latent Semantic Learning with Structured Sparse Representation for Human Action Recognition

    Full text link
    This paper proposes a novel latent semantic learning method for extracting high-level features (i.e. latent semantics) from a large vocabulary of abundant mid-level features (i.e. visual keywords) with structured sparse representation, which can help to bridge the semantic gap in the challenging task of human action recognition. To discover the manifold structure of midlevel features, we develop a spectral embedding approach to latent semantic learning based on L1-graph, without the need to tune any parameter for graph construction as a key step of manifold learning. More importantly, we construct the L1-graph with structured sparse representation, which can be obtained by structured sparse coding with its structured sparsity ensured by novel L1-norm hypergraph regularization over mid-level features. In the new embedding space, we learn latent semantics automatically from abundant mid-level features through spectral clustering. The learnt latent semantics can be readily used for human action recognition with SVM by defining a histogram intersection kernel. Different from the traditional latent semantic analysis based on topic models, our latent semantic learning method can explore the manifold structure of mid-level features in both L1-graph construction and spectral embedding, which results in compact but discriminative high-level features. The experimental results on the commonly used KTH action dataset and unconstrained YouTube action dataset show the superior performance of our method.Comment: The short version of this paper appears in ICCV 201

    Elastic net hypergraph learning for image clustering and semi-supervised classification

    Full text link
    © 1992-2012 IEEE. Graph model is emerging as a very effective tool for learning the complex structures and relationships hidden in data. In general, the critical purpose of graph-oriented learning algorithms is to construct an informative graph for image clustering and classification tasks. In addition to the classical K -nearest-neighbor and r-neighborhood methods for graph construction, l1-graph and its variants are emerging methods for finding the neighboring samples of a center datum, where the corresponding ingoing edge weights are simultaneously derived by the sparse reconstruction coefficients of the remaining samples. However, the pairwise links of l1-graph are not capable of capturing the high-order relationships between the center datum and its prominent data in sparse reconstruction. Meanwhile, from the perspective of variable selection, the l1 norm sparse constraint, regarded as a LASSO model, tends to select only one datum from a group of data that are highly correlated and ignore the others. To simultaneously cope with these drawbacks, we propose a new elastic net hypergraph learning model, which consists of two steps. In the first step, the robust matrix elastic net model is constructed to find the canonically related samples in a somewhat greedy way, achieving the grouping effect by adding the l2 penalty to the l1 constraint. In the second step, hypergraph is used to represent the high order relationships between each datum and its prominent samples by regarding them as a hyperedge. Subsequently, hypergraph Laplacian matrix is constructed for further analysis. New hypergraph learning algorithms, including unsupervised clustering and multi-class semi-supervised classification, are then derived. Extensive experiments on face and handwriting databases demonstrate the effectiveness of the proposed method

    Graph learning and its applications : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science, Massey University, Albany, Auckland, New Zealand

    Get PDF
    Since graph features consider the correlations between two data points to provide high-order information, i.e., more complex correlations than the low-order information which considers the correlations in the individual data, they have attracted much attention in real applications. The key of graph feature extraction is the graph construction. Previous study has demonstrated that the quality of the graph usually determines the effectiveness of the graph feature. However, the graph is usually constructed from the original data which often contain noise and redundancy. To address the above issue, graph learning is designed to iteratively adjust the graph and model parameters so that improving the quality of the graph and outputting optimal model parameters. As a result, graph learning has become a very popular research topic in traditional machine learning and deep learning. Although previous graph learning methods have been applied in many fields by adding a graph regularization to the objective function, they still have some issues to be addressed. This thesis focuses on the study of graph learning aiming to overcome the drawbacks in previous methods for different applications. We list the proposed methods as follows. • We propose a traditional graph learning method under supervised learning to consider the robustness and the interpretability of graph learning. Specifically, we propose utilizing self-paced learning to assign important samples with large weights, conducting feature selection to remove redundant features, and learning a graph matrix from the low dimensional data of the original data to preserve the local structure of the data. As a consequence, both important samples and useful features are used to select support vectors in the SVM framework. • We propose a traditional graph learning method under semi-supervised learning to explore parameter-free fusion of graph learning. Specifically, we first employ the discrete wavelet transform and Pearson correlation coefficient to obtain multiple fully connected Functional Connectivity brain Networks (FCNs) for every subject, and then learn a sparsely connected FCN for every subject. Finally, the ℓ1-SVM is employed to learn the important features and conduct disease diagnosis. • We propose a deep graph learning method to consider graph fusion of graph learning. Specifically, we first employ the Simple Linear Iterative Clustering (SLIC) method to obtain multi-scale features for every image, and then design a new graph fusion method to fine-tune features of every scale. As a result, the multi-scale feature fine-tuning, graph learning, and feature learning are embedded into a unified framework. All proposed methods are evaluated on real-world data sets, by comparing to state-of-the-art methods. Experimental results demonstrate that our methods outperformed all comparison methods

    Hyper-connectivity of functional networks for brain disease diagnosis

    Get PDF
    Exploring structural and functional interactions among various brain regions enables better understanding of pathological underpinnings of neurological disorders. Brain connectivity network, as a simplified representation of those structural and functional interactions, has been widely used for diagnosis and classification of neurodegenerative diseases, especially for Alzheimer’s disease (AD) and its early stage - mild cognitive impairment (MCI). However, the conventional functional connectivity network is usually constructed based on the pairwise correlation among different brain regions and thus ignores their higher-order relationships. Such loss of high-order information could be important for disease diagnosis, since neurologically a brain region predominantly interacts with more than one other brain regions. Accordingly, in this paper, we propose a novel framework for estimating the hyper-connectivity network of brain functions and then use this hyper-network for brain disease diagnosis. Here, the functional connectivity hyper-network denotes a network where each of its edges representing the interactions among multiple brain regions (i.e., an edge can connect with more than two brain regions), which can be naturally represented by a hyper-graph. Specifically, we first construct connectivity hyper-networks from the resting-state fMRI (R-fMRI) time series by using sparse representation. Then, we extract three sets of brain-region specific features from the connectivity hyper-networks, and further exploit a manifold regularized multi-task feature selection method to jointly select the most discriminative features. Finally, we use multi-kernel support vector machine (SVM) for classification. The experimental results on both MCI dataset and attention deficit hyperactivity disorder (ADHD) dataset demonstrate that, compared with the conventional connectivity network-based methods, the proposed method can not only improve the classification performance, but also help discover disease-related biomarkers important for disease diagnosis

    Multi-Label Dimensionality Reduction

    Get PDF
    abstract: Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.Dissertation/ThesisPh.D. Computer Science 201

    Hypergraph Motifs and Their Extensions Beyond Binary

    Full text link
    Hypergraphs naturally represent group interactions, which are omnipresent in many domains: collaborations of researchers, co-purchases of items, and joint interactions of proteins, to name a few. In this work, we propose tools for answering the following questions: (Q1) what are the structural design principles of real-world hypergraphs? (Q2) how can we compare local structures of hypergraphs of different sizes? (Q3) how can we identify domains from which hypergraphs are? We first define hypergraph motifs (h-motifs), which describe the overlapping patterns of three connected hyperedges. Then, we define the significance of each h-motif in a hypergraph as its occurrences relative to those in properly randomized hypergraphs. Lastly, we define the characteristic profile (CP) as the vector of the normalized significance of every h-motif. Regarding Q1, we find that h-motifs' occurrences in 11 real-world hypergraphs from 5 domains are clearly distinguished from those of randomized hypergraphs. Then, we demonstrate that CPs capture local structural patterns unique to each domain, and thus comparing CPs of hypergraphs addresses Q2 and Q3. The concept of CP is extended to represent the connectivity pattern of each node or hyperedge as a vector, which proves useful in node classification and hyperedge prediction. Our algorithmic contribution is to propose MoCHy, a family of parallel algorithms for counting h-motifs' occurrences in a hypergraph. We theoretically analyze their speed and accuracy and show empirically that the advanced approximate version MoCHy-A+ is more accurate and faster than the basic approximate and exact versions, respectively. Furthermore, we explore ternary hypergraph motifs that extends h-motifs by taking into account not only the presence but also the cardinality of intersections among hyperedges. This extension proves beneficial for all previously mentioned applications.Comment: Extended version of VLDB 2020 paper arXiv:2003.0185
    • …
    corecore