2,575 research outputs found

    Model-based clustering reveals vitamin D dependent multi-centrality hubs in a network of vitamin-related proteins

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nutritional systems biology offers the potential for comprehensive predictions that account for all metabolic changes with the intricate biological organization and the multitudinous interactions between the cellular proteins. Protein-protein interaction (PPI) networks can be used for an integrative description of molecular processes. Although widely adopted in nutritional systems biology, these networks typically encompass a single category of functional interaction (<it>i.e</it>., metabolic, regulatory or signaling) or nutrient. Incorporating multiple nutrients and functional interaction categories under an integrated framework represents an informative approach for gaining system level insight on nutrient metabolism.</p> <p>Results</p> <p>We constructed a multi-level PPI network starting from the interactions of 200 vitamin-related proteins. Its final size was 1,657 proteins, with 2,700 interactions. To characterize the role of the proteins we computed 6 centrality indices and applied model-based clustering. We detected a subgroup of 22 proteins that were highly central and significantly related to vitamin D. Immune system and cancer-related processes were strongly represented among these proteins. Clustering of the centralities revealed a degree of redundancy among the indices; a repeated analysis using subsets of the centralities performed well in identifying the original set of 22 most central proteins.</p> <p>Conclusions</p> <p>Hierarchical and model-based clustering revealed multi-centrality hubs in a vitamin PPI network and redundancies among the centrality indices. Vitamin D-related proteins were strongly represented among network hubs, highlighting the pervasive effects of this nutrient. Our integrated approach to network construction identified promiscuous transcription factors, cytokines and enzymes - primarily related to immune system and cancer processes - representing potential gatekeepers linking vitamin intake to disease.</p

    Network-based approaches to explore complex biological systems towards network medicine

    Get PDF
    Network medicine relies on different types of networks: from the molecular level of protein–protein interactions to gene regulatory network and correlation studies of gene expression. Among network approaches based on the analysis of the topological properties of protein–protein interaction (PPI) networks, we discuss the widespread DIAMOnD (disease module detection) algorithm. Starting from the assumption that PPI networks can be viewed as maps where diseases can be identified with localized perturbation within a specific neighborhood (i.e., disease modules), DIAMOnD performs a systematic analysis of the human PPI network to uncover new disease-associated genes by exploiting the connectivity significance instead of connection density. The past few years have witnessed the increasing interest in understanding the molecular mechanism of post-transcriptional regulation with a special emphasis on non-coding RNAs since they are emerging as key regulators of many cellular processes in both physiological and pathological states. Recent findings show that coding genes are not the only targets that microRNAs interact with. In fact, there is a pool of different RNAs—including long non-coding RNAs (lncRNAs) —competing with each other to attract microRNAs for interactions, thus acting as competing endogenous RNAs (ceRNAs). The framework of regulatory networks provides a powerful tool to gather new insights into ceRNA regulatory mechanisms. Here, we describe a data-driven model recently developed to explore the lncRNA-associated ceRNA activity in breast invasive carcinoma. On the other hand, a very promising example of the co-expression network is the one implemented by the software SWIM (switch miner), which combines topological properties of correlation networks with gene expression data in order to identify a small pool of genes—called switch genes—critically associated with drastic changes in cell phenotype. Here, we describe SWIM tool along with its applications to cancer research and compare its predictions with DIAMOnD disease genes
    • 

    corecore