2,730 research outputs found

    Multiuser Precoding and Channel Estimation for Hybrid Millimeter Wave MIMO Systems

    Full text link
    In this paper, we develop a low-complexity channel estimation for hybrid millimeter wave (mmWave) systems, where the number of radio frequency (RF) chains is much less than the number of antennas equipped at each transceiver. The proposed channel estimation algorithm aims to estimate the strongest angle-of-arrivals (AoAs) at both the base station (BS) and the users. Then all the users transmit orthogonal pilot symbols to the BS via these estimated strongest AoAs to facilitate the channel estimation. The algorithm does not require any explicit channel state information (CSI) feedback from the users and the associated signalling overhead of the algorithm is only proportional to the number of users, which is significantly less compared to various existing schemes. Besides, the proposed algorithm is applicable to both non-sparse and sparse mmWave channel environments. Based on the estimated CSI, zero-forcing (ZF) precoding is adopted for multiuser downlink transmission. In addition, we derive a tight achievable rate upper bound of the system. Our analytical and simulation results show that the proposed scheme offer a considerable achievable rate gain compared to fully digital systems, where the number of RF chains equipped at each transceiver is equal to the number of antennas. Furthermore, the achievable rate performance gap between the considered hybrid mmWave systems and the fully digital system is characterized, which provides useful system design insights.Comment: 6 pages, accepted for presentation, ICC 201

    Performance Analysis of Millimeter Wave Massive MIMO Systems in Centralized and Distributed Schemes

    Get PDF
    This paper considers downlink multi-user millimeter-wave massive multiple-input multiple-output (MIMO) systems in both centralized and distributed configurations, referred to as C-MIMO and D-MIMO, respectively. Assuming the fading channel is composite and comprised of both large-scale fading and small-scale fading, a hybrid precoding algorithm leveraging antenna array response vectors is applied into both the C-MIMO system with fully connected structure and the D-MIMO system with partially connected structure. First, the asymptotic spectral efficiency (SE) of an arbitrary user and the asymptotic average SE of the cell for the C-MIMO system are analyzed. Then, two radio access unit (RAU) selection algorithms are proposed for the D-MIMO system, based on minimal distance (D-based) and maximal signal-to-interference-plus-noise-ratio (SINR) (SINR-based), respectively. For the D-MIMO system with circular layout and D-based RAU selection algorithm, the upper bounds on the asymptotic SE of an arbitrary user and the asymptotic average SE of the cell are also investigated. Finally, numerical results are provided to assess the analytical results and evaluate the effects of the numbers of total transmit antennas and users on system performance. It is shown that, from the perspective of the cell, the D-MIMO system with D-based scheme outperforms the C-MIMO system and achieves almost alike performance compared with the SINR-based solution while requiring less complexity.Peer reviewe

    Indoor wireless communications and applications

    Get PDF
    Chapter 3 addresses challenges in radio link and system design in indoor scenarios. Given the fact that most human activities take place in indoor environments, the need for supporting ubiquitous indoor data connectivity and location/tracking service becomes even more important than in the previous decades. Specific technical challenges addressed in this section are(i), modelling complex indoor radio channels for effective antenna deployment, (ii), potential of millimeter-wave (mm-wave) radios for supporting higher data rates, and (iii), feasible indoor localisation and tracking techniques, which are summarised in three dedicated sections of this chapter
    • …
    corecore