45 research outputs found

    Evaluation of Multi-frequency Synthetic Aperture Radar for Subsurface Archaeological Prospection in Arid Environments

    Full text link
    The discovery of the subsurface paleochannels in the Saharan Desert with the 1981 Shuttle Imaging Radar (SIR-A) sensor was hugely significant in the field of synthetic aperture radar (SAR) remote sensing. Although previous studies had indicated the ability of microwaves to penetrate the earth’s surface in arid environments, this was the first applicable instance of subsurface imaging using a spaceborne sensor. And the discovery of the ‘radar rivers’ with associated archaeological evidence in this inhospitable environment proved the existence of an earlier less arid paleoclimate that supported past populations. Since the 1980’s SAR subsurface prospection in arid environments has progressed, albeit primarily in the fields of hydrology and geology, with archaeology being investigated to a lesser extent. Currently there is a lack of standardised methods for data acquisition and processing regarding subsurface imaging, difficulties in image interpretation and insufficient supporting quantitative verification. These barriers keep SAR technology from becoming as integral as other remote sensing techniques in archaeological practice The main objective of this thesis is to undertake a multi-frequency SAR analysis across different site types in arid landscapes to evaluate and enhance techniques for analysing SAR within the context of archaeological subsurface prospection. The analysis and associated fieldwork aim to address the gap in the literature regarding field verification of SAR image interpretation and contribute to the understanding of SAR microwave penetration in arid environments. The results presented in this thesis demonstrate successful subsurface imaging of subtle feature(s) at the site of ‘Uqdat al-Bakrah, Oman with X-band data. Because shorter wavelengths are often ignored due to their limited penetration depths as compared to the C-band or L-band data, the effectiveness of X-band sensors in archaeological prospection at this site is significant. In addition, the associated ground penetrating radar and excavation fieldwork undertaken at ‘Uqdat al-Bakrah confirm the image interpretation and support the quantitative information regarding microwave penetration

    Trends and perspectives of space-borne SAR remote sensing for archaeological landscape and cultural heritage applications

    Get PDF
    This paper provides an overview of the opportunities that image analysts, archaeologists and conservation scientists currently have to use space-borne Synthetic Aperture Radar (SAR) imagery for prospection of cultural landscapes and investigation of environmental, land surface and anthropogenic processes that can alter the condition of heritage assets. The benefits of the recent developments in SAR satellite sensors towards higher resolution (up to less than 1 m) and shorter revisiting times (up to a few days) are discussed in relation to established techniques using the two key SAR parameters – amplitude and phase. Selected case studies from Middle East to South America illustrate how SAR can be effectively used to detect subtle archaeological features in modern landscapes, monitor historic sites and assess damage in areas of conflict. These examples form the basis to highlight the current trends in archaeological remote sensing based on space-borne SAR data in the era of the European Space Agency's Sentinel-1 constellation and on-demand high resolution space missions such as TerraSAR-X

    The detection of ancient mines by NASA space shuttle imaging RADAR: Scotland, the Sinai and Spain

    Get PDF

    Automated detection of archaeological mounds using machine-learning classification of multisensor and multitemporal satellite data.

    Get PDF
    This paper presents an innovative multisensor, multitemporal machine-learning approach using remote sensing big data for the detection of archaeological mounds in Cholistan (Pakistan). The Cholistan Desert presents one of the largest concentrations of Indus Civilization sites (from ca 3300 to 1500 BC). Cholistan has figured prominently in theories about changes in water availability, the rise and decline of the Indus Civilization, and the transformation of fertile monsoonal alluvial plains into an extremely arid margin. This paper implements a multisensor, multitemporal machine-learning approach for the remote detection of archaeological mounds. A classifier algorithm that employs a large-scale collection of synthetic-aperture radar and multispectral images has been implemented in Google Earth Engine, resulting in an accurate probability map for mound-like signatures across an area that covers ca 36,000 km2 The results show that the area presents many more archaeological mounds than previously recorded, extending south and east into the desert, which has major implications for understanding the archaeological significance of the region. The detection of small (30 ha) suggests that there were continuous shifts in settlement location. These shifts are likely to reflect responses to a dynamic and changing hydrological network and the influence of the progressive northward advance of the desert in a long-term process that culminated in the abandonment of much of the settled area during the Late Harappan period.ER

    Remote Sensing and Geosciences for Archaeology

    Get PDF
    This book collects more than 20 papers, written by renowned experts and scientists from across the globe, that showcase the state-of-the-art and forefront research in archaeological remote sensing and the use of geoscientific techniques to investigate archaeological records and cultural heritage. Very high resolution satellite images from optical and radar space-borne sensors, airborne multi-spectral images, ground penetrating radar, terrestrial laser scanning, 3D modelling, Geographyc Information Systems (GIS) are among the techniques used in the archaeological studies published in this book. The reader can learn how to use these instruments and sensors, also in combination, to investigate cultural landscapes, discover new sites, reconstruct paleo-landscapes, augment the knowledge of monuments, and assess the condition of heritage at risk. Case studies scattered across Europe, Asia and America are presented: from the World UNESCO World Heritage Site of Lines and Geoglyphs of Nasca and Palpa to heritage under threat in the Middle East and North Africa, from coastal heritage in the intertidal flats of the German North Sea to Early and Neolithic settlements in Thessaly. Beginners will learn robust research methodologies and take inspiration; mature scholars will for sure derive inputs for new research and applications

    Integración geoespacial para mapear asentamientos prehispánicos en los límites del imperio azteca

    Full text link
    [EN] Mexico s vast archaeological research tradition has increased with the use of remote sensing technologies; however, this recent approach is still costly in emerging market economies. In addition, the scales of prospection, landscape, and violence affect the type of research that heritage-culture ministries and universities can conduct. In Central Mexico, researchers have studied the pre-Hispanic Settlement Pattern during the Mesoamerican Postclassic (900-1521 AD) within the scope of the Aztec Empire and its conquests. There are settlements indications before and during the rule of the central empire, but the evidence is difficult to identify, particularly in the southwest of the capital, in the transition between the Lerma and Balsas River basins and their political-geographical complexities. This research focuses on a Geographic Information System (GIS)-based processing of multiple source data, the potential prospection of archaeological sites based on spatial data integration from Sentinel-2 optical sensors, Unmanned Aerial Vehicle (UAV), Digital Terrain Model (DTM), Normalized Difference Vegetation Index (NDVI) and field validation. What is revealed is the relationship between terrain morphologies and anthropic modifications. A binary map expresses possible archaeological remnants as a percentage; NDVI pixels and the morphometry values were associated with anthropic features (meso-reliefs with a tendency to regular geometries: slope, orientation, and roughness index); they were then interpreted as probable archaeological evidence. Within archaeological fieldwork, with limited resources (time, funding and staff), this approach proposes a robust method that can be replicated in other mountainous landscapes that are densely covered by vegetation.[ES] México tiene una vasta tradición de investigación arqueológica que, en las últimas décadas, se ha incrementado con el uso de tecnologías de percepción remota; sin embargo, este enfoque sigue siendo costoso en el contexto de las economías emergentes. Además, las escalas de prospección, paisaje e inseguridad influyen en el tipo de investigación que realizan los ministerios de patrimonio cultural y las universidades. En el Centro de México, el Patrón de Asentamiento Prehispánico durante el Posclásico Mesoamericano (900-1521 d.C.), ha sido estudiado dentro del alcance del Imperio Azteca y sus conquistas. Hay indicios de asentamientos antes y durante el dominio del Imperio central, pero la evidencia es difícil de identificar; particularmente en el suroeste de la capital, en la transición entre las cuencas de los ríos Lerma y Balsas y sus complejidades político-geográficas. Esta investigación se centra en el procesamiento basado en GIS de datos de múltiples fuentes, la prospección de sitios arqueológicos apoyada en la integración de datos espaciales de los sensores ópticos Sentinel-2, el vehículo aéreo no tripulado (UAV), el modelo digital del terreno (MDT), el índice de vegetación de diferencia normalizada (NDVI) y la validación de campo, que revelan la relación entre las morfologías del terreno y las modificaciones antrópicas. Un mapa binario expresa los posibles remanentes arqueológicos como un porcentaje; los píxeles del NDVI y los valores de morfometría se asociaron a características antrópicas (mesorrelieves con tendencia a geometrías regulares: pendiente, orientación e índice de rugosidad), y se interpretaron como probable evidencia arqueológica. Dentro del trabajo de campo arqueológico, con recursos limitados (tiempo, finanzas y auxiliares), este enfoque sugiere un método robusto que puede ser replicado en otros paisajes montañosos que están densamente cubiertos por vegetación.Miranda-Gómez, R.; Cabadas-Báez, HV.; Antonio-Némiga, X.; Dávila-Hernández, N. (2022). Geospatial integration in mapping pre-Hispanic settlements within Aztec empire limits. Virtual Archaeology Review. 13(27):49-65. https://doi.org/10.4995/var.2022.161064965132

    SAR Sentinel 1 imaging and detection of palaeo-landscape features in the mediterranean area

    Get PDF
    The use of satellite radar in landscape archaeology offers great potential for manifold applications, such as the detection of ancient landscape features and anthropogenic transformations. Compared to optical data, the use and interpretation of radar imaging for archaeological investigations is more complex, due to many reasons including that: (i) ancient landscape features and anthropogenic transformations provide subtle signals, which are (ii) often covered by noise; and, (iii) only detectable in specific soil characteristics, moisture content, vegetation phenomenology, and meteorological parameters. In this paper, we assessed the capability of SAR Sentinel 1 in the imaging and detection of palaeo-landscape features in the Mediterranean area of Tavoliere delle Puglie. For the purpose of our investigations, a significant test site (larger than 200 km2) was selected in the Foggia Province (South of Italy) as this area has been characterized for millennia by human frequentation starting from (at least) the Neolithic. The results from the Sentinel 1 (S-1) data were successfully compared with independent data sets, and the comparison clearly showed an excellent match between the S-1 based outputs and ancient anthropogenic transformations and landscape features

    Assessment of Paleo-Landscape Features using Advanced Remote Sensing Techniques, Modelling and GIS Methods in the Lake Manyara Basin, Northern Tanzania

    Get PDF
    In researching the evolution of hominids, the East African Rift System acts as a vital region. The rift valleys enabled some of the most sensational hominid findings to date. Various hypotheses have been developed in the last decades, which try to explain the influence of changes in paleo-climate, paleo-landscape and paleo-environment on hominin evolution in the Quaternary. Additionally, the sediments and the morphology of the East African Rift System provide excellent terrestrial archives for paleo-environmental reconstruction. Lake Manyara is located in an endorheic basin in the eastern arm of the East African Rift System in northern Tanzania. The surroundings of the Lake Manyara are in the focus of paleontological and archaeological investigations. For instance, two hominin bearing sites were found within the catchment of the Makuyuni River, as well as artefacts and fossils are periodically uncovered. The study area, which is located east of the present-day lake, provides an insight into relevant geological and geomorphological drivers of paleo-landscape evolution of the whole region. This thesis aims at contributing to the understanding of landscape evolution in the Lake Manyara region. Compared to other regions in the East African rift system, few landscape evolution studies took place for the Lake Manyara basin. As such, an integrative scientific investigation of the spatial situation of paleo-landscape features and of paleo-lake level fluctuations is missing. The proposed study utilizes state-of-the-art remote sensing based research methods in evaluating the landscape, and in concluding from present-day landforms and processes, how the landscape developed during the Pleistocene and Holocene. In striving to accomplish this goal, this cumulative dissertation comprises eight central research questions, which are introduced in a conceptual framework. The research questions have been considered in seven scientific publications, which describe the applied methodologies and results in detail. The framework of the thesis provides a coherent and detailed interpretation and discussion of the scientific findings. The research questions and outcomes of the analyses are listed below. Key drivers of landscape development in the East African Rift System are tectonic and tectonically induced processes. Drainage network, stream longitudinal profiles and basin analysis based on topographic analyses, as well as lineaments extracted from remote sensing images, were successfully used as methods in identifying tectonic activity and related features in rift areas. The application of a gully erosion model suggests that the gully channel systems in the study area are relatively stable and that they had developed prior to the last significant lake regression. The paleo-landscape and the paleo-environment are closely connected to lake level changes of the paleo-Lake Manyara. Hence, a key question concerns the extent of the Manyara Beds, which are lacustrine deposits that indicate the maximum extent of the paleo-Lake Manyara. A combined analysis, utilizing ASTER multispectral indices and topographic parameters from a digital elevation model, led to the spatial delineation of lacustrine sediments. Their extent indicates a relation to lacustrine sediments in the southern part of the basin, and reveals lacustrine / palustrine deposits further east. A methodological comparison of Support Vector Machines and Boosted Regression Trees, which served as classification methods to identify the lacustrine sediments, exhibited high accuracies for both approaches, with minor advantages for Support Vector Machines. Closely related to the previous research question is the question on the spatial distribution of surface substrates. By incorporating a WorldView-2 scene and Synthetic Aperture Radar data to the previously mentioned datasets, it was possible to distinguish between nine topsoil and lithological target classes in the study area. The surface substrates indicate the underlying lithologies, sediments and soils, as well as soil formation processes. Between the village of Makuyuni and the present-day Lake Manyara, paleo-shorelines and terraces were formed by various paleo-lake levels. Questions arise, at which elevation these features occur and what is the maximum elevation, which was reached. ALOS PALSAR and TerraSAR-X backscatter intensity information provided the possibility of an area-wide mapping of those morphological features. Some radiometric dates exist for stromatolites from a distinct paleo-shoreline level, which support the interpretation of the lake fluctuations. The paleo-shoreline, which was identified with the highest elevation, coincides with the elevation of the lowest possible outlet of the closed Manyara basin. It can be assumed that the paleo-Lake Manyara over-spilled into the neighboring Engaruka and Natron-Magadi basins. The question of the location of sites with a high probability of artefact and/or fossil presence is important for future archaeological and paleontological research. ASTER remote sensing data and topographic indices contributed likewise to the predictive modelling of probabilities of archaeological and paleontological sites in the study area. Generally, paleontological sites are found on a higher elevation, compared to Stone Age sites. In addition, fossil sites seem to be related to stable paleo-landscape features according to this study’s findings. The results of this dissertation provide new insights in the landscape development of the Lake Manyara basin. The scientific findings contribute to the understanding of the landscape evolution for the study area, as well as for the neighboring basins in the East African Rift System. The applied geospatial methodologies can be transferred to other study areas with similar research needs

    Advanced Techniques for Ground Penetrating Radar Imaging

    Get PDF
    Ground penetrating radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in non-destructive testing (NDT), since it is able to detect both metallic and nonmetallic targets. GPR for NDT has been successfully introduced in a wide range of sectors, such as mining and geology, glaciology, civil engineering and civil works, archaeology, and security and defense. In recent decades, improvements in georeferencing and positioning systems have enabled the introduction of synthetic aperture radar (SAR) techniques in GPR systems, yielding GPR–SAR systems capable of providing high-resolution microwave images. In parallel, the radiofrequency front-end of GPR systems has been optimized in terms of compactness (e.g., smaller Tx/Rx antennas) and cost. These advances, combined with improvements in autonomous platforms, such as unmanned terrestrial and aerial vehicles, have fostered new fields of application for GPR, where fast and reliable detection capabilities are demanded. In addition, processing techniques have been improved, taking advantage of the research conducted in related fields like inverse scattering and imaging. As a result, novel and robust algorithms have been developed for clutter reduction, automatic target recognition, and efficient processing of large sets of measurements to enable real-time imaging, among others. This Special Issue provides an overview of the state of the art in GPR imaging, focusing on the latest advances from both hardware and software perspectives

    Study of the speckle noise effects over the eigen decomposition of polarimetric SAR data: a review

    No full text
    This paper is focused on considering the effects of speckle noise on the eigen decomposition of the co- herency matrix. Based on a perturbation analysis of the matrix, it is possible to obtain an analytical expression for the mean value of the eigenvalues and the eigenvectors, as well as for the Entropy, the Anisotroopy and the dif- ferent a angles. The analytical expressions are compared against simulated polarimetric SAR data, demonstrating the correctness of the different expressions.Peer ReviewedPostprint (published version
    corecore