776 research outputs found

    Oriented Response Networks

    Full text link
    Deep Convolution Neural Networks (DCNNs) are capable of learning unprecedentedly effective image representations. However, their ability in handling significant local and global image rotations remains limited. In this paper, we propose Active Rotating Filters (ARFs) that actively rotate during convolution and produce feature maps with location and orientation explicitly encoded. An ARF acts as a virtual filter bank containing the filter itself and its multiple unmaterialised rotated versions. During back-propagation, an ARF is collectively updated using errors from all its rotated versions. DCNNs using ARFs, referred to as Oriented Response Networks (ORNs), can produce within-class rotation-invariant deep features while maintaining inter-class discrimination for classification tasks. The oriented response produced by ORNs can also be used for image and object orientation estimation tasks. Over multiple state-of-the-art DCNN architectures, such as VGG, ResNet, and STN, we consistently observe that replacing regular filters with the proposed ARFs leads to significant reduction in the number of network parameters and improvement in classification performance. We report the best results on several commonly used benchmarks.Comment: Accepted in CVPR 2017. Source code available at http://yzhou.work/OR

    Stacking-based Deep Neural Network: Deep Analytic Network on Convolutional Spectral Histogram Features

    Full text link
    Stacking-based deep neural network (S-DNN), in general, denotes a deep neural network (DNN) resemblance in terms of its very deep, feedforward network architecture. The typical S-DNN aggregates a variable number of individually learnable modules in series to assemble a DNN-alike alternative to the targeted object recognition tasks. This work likewise devises an S-DNN instantiation, dubbed deep analytic network (DAN), on top of the spectral histogram (SH) features. The DAN learning principle relies on ridge regression, and some key DNN constituents, specifically, rectified linear unit, fine-tuning, and normalization. The DAN aptitude is scrutinized on three repositories of varying domains, including FERET (faces), MNIST (handwritten digits), and CIFAR10 (natural objects). The empirical results unveil that DAN escalates the SH baseline performance over a sufficiently deep layer.Comment: 5 page

    DCTNet : A Simple Learning-free Approach for Face Recognition

    Full text link
    PCANet was proposed as a lightweight deep learning network that mainly leverages Principal Component Analysis (PCA) to learn multistage filter banks followed by binarization and block-wise histograming. PCANet was shown worked surprisingly well in various image classification tasks. However, PCANet is data-dependence hence inflexible. In this paper, we proposed a data-independence network, dubbed DCTNet for face recognition in which we adopt Discrete Cosine Transform (DCT) as filter banks in place of PCA. This is motivated by the fact that 2D DCT basis is indeed a good approximation for high ranked eigenvectors of PCA. Both 2D DCT and PCA resemble a kind of modulated sine-wave patterns, which can be perceived as a bandpass filter bank. DCTNet is free from learning as 2D DCT bases can be computed in advance. Besides that, we also proposed an effective method to regulate the block-wise histogram feature vector of DCTNet for robustness. It is shown to provide surprising performance boost when the probe image is considerably different in appearance from the gallery image. We evaluate the performance of DCTNet extensively on a number of benchmark face databases and being able to achieve on par with or often better accuracy performance than PCANet.Comment: APSIPA ASC 201

    Recognition of Facial Expressions using Local Mean Binary Pattern

    Get PDF
    In this paper, we propose a novel appearance based local feature extraction technique called Local Mean Binary Pattern (LMBP), which efficiently encodes the local texture and global shape of the face. LMBP code is produced by weighting the thresholded neighbor intensity values with respect to mean of 3 x 3 patch. LMBP produces highly discriminative code compared to other state of the art methods. The micro pattern is derived using the mean of the patch, and hence it is robust against illumination and noise variations. An image is divided into M x N regions and feature descriptor is derived by concatenating LMBP distribution of each region. We also propose a novel template matching strategy called Histogram Normalized Absolute Difference (HNAD) for comparing LMBP histograms. Rigorous experiments prove the effectiveness and robustness of LMBP operator. Experiments also prove the superiority of HNAD measure over well-known template matching methods such as L2 norm and Chi-Square measure. We also investigated LMBP for facial expression recognition low resolution. The performance of the proposed approach is tested on well-known datasets CK, JAFFE, and TFEID
    corecore