9,183 research outputs found

    A Fusion Framework for Camouflaged Moving Foreground Detection in the Wavelet Domain

    Full text link
    Detecting camouflaged moving foreground objects has been known to be difficult due to the similarity between the foreground objects and the background. Conventional methods cannot distinguish the foreground from background due to the small differences between them and thus suffer from under-detection of the camouflaged foreground objects. In this paper, we present a fusion framework to address this problem in the wavelet domain. We first show that the small differences in the image domain can be highlighted in certain wavelet bands. Then the likelihood of each wavelet coefficient being foreground is estimated by formulating foreground and background models for each wavelet band. The proposed framework effectively aggregates the likelihoods from different wavelet bands based on the characteristics of the wavelet transform. Experimental results demonstrated that the proposed method significantly outperformed existing methods in detecting camouflaged foreground objects. Specifically, the average F-measure for the proposed algorithm was 0.87, compared to 0.71 to 0.8 for the other state-of-the-art methods.Comment: 13 pages, accepted by IEEE TI

    Multi Focus Image Fusion with variable size windows

    Full text link
    [EN] In this paper we present the Linear Image Combination Algorithm with Variable Windows (CLI-VV) for the fusion of multifocus images. Unlike the CLI-S algorithm presented in a previous work, the CLI-VV algorithm allows to automatically determine the optimal size of the window in each pixel for the segmentation of the regions with the highest sharpness. We also present the generalized CLI-VV Algorithm for the fusion of sets of multi-focus images with more than two images. This new algorithm is called Variable Windows Multi-focus Fusion (FM-VV). The CLI-VV Algorithm was tested with 21 pairs of synthetic images and 29 pairs of real multi-focus images, and the FM-VV Algorithm on 5 trios of multi-focus images. In all the tests a competitive accuracy was obtained, with execution times lower than those reported in the literature.[ES] En este artículo presentamos el Algoritmo Combinación Lineal de Imágenes con Ventanas Variables (CLI-VV) para la fusión de imágenes multi-foco. A diferencia del Algoritmo CLI-S presentado en un trabajo anterior, el algoritmo CLI-VV permite determinar automáticamente el tamaño óptimo de la ventana en cada píxel para la segmentación de las regiones con la mayor nitidez. También presentamos la generalizado el Algoritmo CLI-VV para la fusión de conjuntos de imágenes multi-foco con más de dos imágenes. A este nuevo algoritmo lo denominamos Fusión Multi-foco con Ventanas Variables (FM-VV). El Algoritmo CLI-VV se probó con 21 pares de imágenes sintéticas y 29 pares de imágenes multi-foco reales, y el Algoritmo FM-VV sobre 5 tríos de imágenes multi-foco. En todos los ejemplos se obtuvo un porcentaje de acierto competitivos, producidos en tiempos de ejecución menores a los reportados en la literatura.Calderon, F.; Garnica-Carrillo, A.; Flores, JJ. (2018). Fusión de Imágenes Multi-Foco con Ventanas Variables. Revista Iberoamericana de Automática e Informática industrial. 15(3):262-276. https://doi.org/10.4995/riai.2017.8852OJS262276153Aslantas, V., Kurban, R., 2010. Fusion of multi-focus images using differential evolution algorithm. Expert Systems with Applications 37 (12), 8861 - 8870. https://doi.org/10.1016/j.eswa.2010.06.011Aslantas, V., Toprak, A. N., 2014. A pixel based multi-focus image fusion method. Optics Communications 332, 350 - 358. https://doi.org/10.1016/j.optcom.2014.07.044Aslantas, V., Toprak, A. N., 2017. Multi-focus image fusion based on optimal defocus estimation. Computers and Electrical Engineering. https://doi.org/10.1016/j.compeleceng.2017.02.003Assirati, L., Silva, N. R., Berton, L., Lopes, A. A., Bruno, O. M., 2014. Performing edge detection by difference of gaussians using q-gaussian kernels. Journal of Physics: Conference Series 490 (1), 012020. https://doi.org/10.1088/1742-6596/490/1/012020Bai, X., Zhang, Y., Zhou, F., Xue, B., 2015. Quadtree-based multi-focus image fusion using a weighted focus-measure. Information Fusion 22, 105 - 118. https://doi.org/10.1016/j.inffus.2014.05.003Calderon, F., Garnica, A., 2014. Multi focus image fusion based on linear combination of images. IEEE, pp. 1-7. https://doi.org/10.1109/ROPEC.2014.7036340Calderon, F., Garnica-Carrillo, A., Flores, J. J., 2016. Fusión de imágenes multi foco basado en la combinación lineal de imágenes utilizando imágenes incrementales. Revista Iberoamericana de Automática e Informática Industrial RIAI 13 (4), 450 - 461. https://doi.org/10.1016/j.riai.2016.07.002Cao, L., Jin, L., Tao, H., Li, G., Zhuang, Z., Zhang, Y., Feb 2015. Multi-focus image fusion based on spatial frequency in discrete cosine transform domain. Signal Processing Letters, IEEE 22 (2), 220-224. https://doi.org/10.1109/LSP.2014.2354534Chai, Y., Li, H., Li, Z., 2011. Multifocus image fusion scheme using focused region detection and multiresolution. Optics Communications 284 (19), 4376 - 4389. https://doi.org/10.1016/j.optcom.2011.05.046De, I., Chanda, B., 2013. Multi-focus image fusion using a morphology-based focus measure in a quad-tree structure. Information Fusion 14 (2), 136 - 146. https://doi.org/10.1016/j.inffus.2012.01.007Duan, J., Meng, G., Xiang, S., Pan, C., 2014. Multifocus image fusion via focus segmentation and region reconstruction. Neurocomputing 140, 193 - 209. https://doi.org/10.1016/j.neucom.2014.03.023Eskicioglu, A., Fisher, P., Dec 1995. Image quality measures and their performance. Communications, IEEE Transactions on 43 (12), 2959-2965. https://doi.org/10.1109/26.477498Kong, W., Lei, Y., 2017. Multi-focus image fusion using biochemical ion exchange model. Applied Soft Computing 51, 314 - 327. https://doi.org/10.1016/j.asoc.2016.11.033Kuthirummal, S., Nagahara, H., Zhou, C., Nayar, S., Jan 2011. Flexible depth of field photography. Pattern Analysis and Machine Intelligence, IEEE Transactions on 33 (1), 58-71. https://doi.org/10.1109/TPAMI.2010.66Lewis, J. J., O'Callaghan, R. J., Nikolov, S. G., Bull, D. R., Canagarajah, N., 2007. Pixel- and region-based image fusion with complex wavelets. Information Fusion 8 (2), 119 - 130, special Issue on Image Fusion: Advances in the State of the Art. https://doi.org/10.1016/j.inffus.2005.09.006Li, H., Chai, Y., Li, Z., 2013a. Multi-focus image fusion based on nonsubsampled contourlet transform and focused regions detection. Optik - International Journal for Light and Electron Optics 124 (1), 40 - 51. https://doi.org/10.1016/j.ijleo.2011.11.088Li, H., Chai, Y., Li, Z., 2013b. A new fusion scheme for multifocus images based on focused pixels detection. Machine vision and applications 24 (6), 1167-1181. https://doi.org/10.1007/s00138-013-0502-4Li, H., Manjunath, B., Mitra, S., 1995. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing 57 (3), 235 - 245. https://doi.org/10.1006/gmip.1995.1022Li, S., Kang, X., Fang, L., Hu, J., Yin, H., 2017. Pixel-level image fusion: A survey of the state of the art. Information Fusion 33, 100 - 112. https://doi.org/10.1016/j.inffus.2016.05.004Li, S., Kwok, J. T., Wang, Y., 2001. Combination of images with diverse focuses using the spatial frequency. Information Fusion 2 (3), 169 - 176. https://doi.org/10.1016/S1566-2535(01)00038-0Li, S., Kwok, J. T., Wang, Y., 2002. Multifocus image fusion using artificial neural networks. Pattern Recognition Letters 23 (8), 985 - 997. https://doi.org/10.1016/S0167-8655(02)00029-6Li, S., Yang, B., 2008a. Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recognition Letters 29 (9), 1295-1301. https://doi.org/10.1016/j.patrec.2008.02.002Li, S., Yang, B., 2008b. Multifocus image fusion using region segmentation and spatial frequency. Image and Vision Computing 26 (7), 971 - 979. https://doi.org/10.1016/j.imavis.2007.10.012Li, X., He, M., Roux, M., August 2010. Multifocus image fusion based on redundant wavelet transform. Image Processing, IET 4 (4), 283-293. https://doi.org/10.1049/iet-ipr.2008.0259Liu, Y., Chen, X., Peng, H., Wang, Z., 2017a. Multi-focus image fusion with a deep convolutional neural network. Information Fusion 36, 191 - 207. https://doi.org/10.1016/j.inffus.2016.12.001Liu, Z., Chai, Y., Yin, H., Zhou, J., Zhu, Z., 2017b. A novel multi-focus image fusion approach based on image decomposition. Information Fusion 35, 102 - 116. https://doi.org/10.1016/j.inffus.2016.09.007Long, J., Shelhamer, E., Darrell, T., 2014. Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038.Luo, X., Zhang, J., Dai, Q., 2012. A regional image fusion based on similarity characteristics. Signal Processing 92 (5), 1268 - 1280. https://doi.org/10.1016/j.sigpro.2011.11.021Ma, Y., Zhan, K.,Wang, Z., service), S. O., 2011. Applications of pulse-coupled neural networks.Malviya, A., Bhirud, S., Dec 2009. Wavelet based multi-focus image fusion. In: Methods and Models in Computer Science, 2009. ICM2CS 2009. Proceeding of International Conference on. pp. 1-6. https://doi.org/10.1109/ICM2CS.2009.5397990Nejati, M., Samavi, S., Shirani, S., 2015. Multi-focus image fusion using dictionary-based sparse representation. Information Fusion 25, 72 - 84. https://doi.org/10.1016/j.inffus.2014.10.004Orozco, R. I., 2013. Fusión de imágenes multifoco por medio de filtrado de regiones de alta y baja frecuencia. Master's thesis, División de Estudios de Postgrado. Facultad de Ingeniería Eléctrica. UMSNH, Morelia Michoacan Mexico.Pagidimarry, M., Babu, K. A., 2011. An all approach for multi-focus image fusion using neural network. Artificial Intelligent Systems and Machine Learning 3 (12), 732-739.Pajares, G., de la Cruz, J. M., 2004. A wavelet-based image fusion tutorial. Pattern Recognition 37 (9), 1855 - 1872. https://doi.org/10.1016/j.patcog.2004.03.010Piella, G., 2003. A general framework for multiresolution image fusion: from pixels to regions. Information Fusion 4 (4), 259 - 280. https://doi.org/10.1016/S1566-2535(03)00046-0Pramanik, S., Prusty, S., Bhattacharjee, D., Bhunre, P. K., 2013. A region-topixel based multi-sensor image fusion. Procedia Technology 10, 654 - 662. https://doi.org/10.1016/j.protcy.2013.12.407Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z., 2014. Magnetic resonance image reconstruction from undersampled measurements using a patchbased nonlocal operator. Medical Image Analysis 18 (6), 843 - 856, sparse Methods for Signal Reconstruction and Medical Image Analysis. https://doi.org/10.1016/j.media.2013.09.007Riaz, M., Park, S., Ahmad, M., Rasheed, W., Park, J., 2008. Generalized laplacian as focus measure. In: Bubak, M., van Albada, G., Dongarra, J., Sloot, P. (Eds.), Computational Science ICCS 2008. Vol. 5101 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 1013-1021. https://doi.org/10.1007/978-3-540-69384-0_106Rivera, M., Ocegueda, O., Marroquin, J., Dec 2007. Entropy-controlled quadratic markov measure field models for efficient image segmentation. Image Processing, IEEE Transactions on 16 (12), 3047-3057. https://doi.org/10.1109/TIP.2007.909384Sezan, M., Pavlovic, G., Tekalp, A., Erdem, A., Apr 1991. On modeling the focus blur in image restoration. In: Acoustics, Speech, and Signal Processing, 1991. ICASSP-91., 1991 International Conference on. pp. 2485-2488 vol.4. https://doi.org/10.1109/ICASSP.1991.150905Shah, P., Merchant, S. N., Desai, U. B., 2013. Multifocus and multispectral image fusion based on pixel significance using multiresolution decomposition. Signal, Image and Video Processing 7 (1), 95-109. https://doi.org/10.1007/s11760-011-0219-7Shi, W., Zhu, C., Tian, Y., Nichol, J., 2005. Wavelet-based image fusion and quality assessment. International Journal of Applied Earth Observation and Geoinformation 6 (3-4), 241 - 251. https://doi.org/10.1016/j.jag.2004.10.010Tian, J., Chen, L., Sept 2010. Multi-focus image fusion using wavelet-domain statistics. In: Image Processing (ICIP), 2010 17th IEEE International Conference on. pp. 1205-1208. https://doi.org/10.1109/ICIP.2010.5651791Viola, P., Jones, M., 2001. Rapid object detection using a boosted cascade of simple features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on. Vol. 1. pp. I-511-I-518 vol.1. https://doi.org/10.1109/CVPR.2001.990517Yang, Y., 2011. A novel fDWTg based multi-focus image fusion method. Procedia Engineering 24 (0), 177 - 181, international Conference on Advances in Engineering 2011.Yang, Y., Huang, S., Gao, J., Qian, Z., 2014. Multi-focus image fusion using an effective discrete wavelet transform based algorithm. Measurement Science Review 14 (2), 102 - 108. https://doi.org/10.2478/msr-2014-0014Yang, Y., Tong, S., Huang, S., Lin, P., 2015. Multifocus image fusion based on nsct and focused area detection. IEEE Sensors Journal 15 (5), 2824-2838. Zhang, B., Lu, X., Pei, H., Liu, H., Zhao, Y., Zhou, W., 2016a. Multi-focus image fusion algorithm based on focused region extraction. Neurocomputing 174, 733 - 748. https://doi.org/10.1016/j.neucom.2015.09.092Zhang, Q., long Guo, B., 2009. Multifocus image fusion using the nonsubsampled contourlet transform. Signal Processing 89 (7), 1334 - 1346. https://doi.org/10.1016/j.sigpro.2009.01.012Zhang, Y., Chen, L., Zhao, Z., Jia, J., 2016b. Multi-focus image fusion based on cartoon-texture image decomposition. Optik - International Journal for Light and Electron Optics 127 (3), 1291 - 1296. https://doi.org/10.1016/j.ijleo.2015.10.098Zhang, Z., Blum, R., Aug 1999. A categorization of multiscale-decompositionbased image fusion schemes with a performance study for a digital camera application. Proceedings of the IEEE 87 (8), 1315-1326. https://doi.org/10.1109/5.775414Zhao, H., Li, Q., Feng, H., 2008. Multi-focus color image fusion in the HSI space using the sum-modified-laplacian and a coarse edge map. Image and Vision Computing 26 (9), 1285 - 1295. https://doi.org/10.1016/j.imavis.2008.03.007Zhou, L., Ji, G., Shi, C., Feng, C., Nian, R., 2006. A Multi-focus Image Fusion Method Based on Image Information Features and the Artificial Neural Networks. Vol. 344. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 747-752. https://doi.org/10.1007/978-3-540-37256-1_91Zhou, Z., Li, S., Wang, B., 2014. Multi-scale weighted gradient-based fusion for multi-focus images. Information Fusion 20 (0), 60 - 72. https://doi.org/10.1016/j.inffus.2013.11.00

    Multimodal music information processing and retrieval: survey and future challenges

    Full text link
    Towards improving the performance in various music information processing tasks, recent studies exploit different modalities able to capture diverse aspects of music. Such modalities include audio recordings, symbolic music scores, mid-level representations, motion, and gestural data, video recordings, editorial or cultural tags, lyrics and album cover arts. This paper critically reviews the various approaches adopted in Music Information Processing and Retrieval and highlights how multimodal algorithms can help Music Computing applications. First, we categorize the related literature based on the application they address. Subsequently, we analyze existing information fusion approaches, and we conclude with the set of challenges that Music Information Retrieval and Sound and Music Computing research communities should focus in the next years

    Medical Image Segmentation Based on Multi-Modal Convolutional Neural Network: Study on Image Fusion Schemes

    Full text link
    Image analysis using more than one modality (i.e. multi-modal) has been increasingly applied in the field of biomedical imaging. One of the challenges in performing the multimodal analysis is that there exist multiple schemes for fusing the information from different modalities, where such schemes are application-dependent and lack a unified framework to guide their designs. In this work we firstly propose a conceptual architecture for the image fusion schemes in supervised biomedical image analysis: fusing at the feature level, fusing at the classifier level, and fusing at the decision-making level. Further, motivated by the recent success in applying deep learning for natural image analysis, we implement the three image fusion schemes above based on the Convolutional Neural Network (CNN) with varied structures, and combined into a single framework. The proposed image segmentation framework is capable of analyzing the multi-modality images using different fusing schemes simultaneously. The framework is applied to detect the presence of soft tissue sarcoma from the combination of Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET) images. It is found from the results that while all the fusion schemes outperform the single-modality schemes, fusing at the feature level can generally achieve the best performance in terms of both accuracy and computational cost, but also suffers from the decreased robustness in the presence of large errors in any image modalities.Comment: Zhe Guo and Xiang Li contribute equally to this wor
    • …
    corecore