8,345 research outputs found

    Applying a User-centred Approach to Interactive Visualization Design

    Get PDF
    Analysing users in their context of work and finding out how and why they use different information resources is essential to provide interactive visualisation systems that match their goals and needs. Designers should actively involve the intended users throughout the whole process. This chapter presents a user-centered approach for the design of interactive visualisation systems. We describe three phases of the iterative visualisation design process: the early envisioning phase, the global specification hase, and the detailed specification phase. The whole design cycle is repeated until some criterion of success is reached. We discuss different techniques for the analysis of users, their tasks and domain. Subsequently, the design of prototypes and evaluation methods in visualisation practice are presented. Finally, we discuss the practical challenges in design and evaluation of collaborative visualisation environments. Our own case studies and those of others are used throughout the whole chapter to illustrate various approaches

    Shingle 2.0: generalising self-consistent and automated domain discretisation for multi-scale geophysical models

    Full text link
    The approaches taken to describe and develop spatial discretisations of the domains required for geophysical simulation models are commonly ad hoc, model or application specific and under-documented. This is particularly acute for simulation models that are flexible in their use of multi-scale, anisotropic, fully unstructured meshes where a relatively large number of heterogeneous parameters are required to constrain their full description. As a consequence, it can be difficult to reproduce simulations, ensure a provenance in model data handling and initialisation, and a challenge to conduct model intercomparisons rigorously. This paper takes a novel approach to spatial discretisation, considering it much like a numerical simulation model problem of its own. It introduces a generalised, extensible, self-documenting approach to carefully describe, and necessarily fully, the constraints over the heterogeneous parameter space that determine how a domain is spatially discretised. This additionally provides a method to accurately record these constraints, using high-level natural language based abstractions, that enables full accounts of provenance, sharing and distribution. Together with this description, a generalised consistent approach to unstructured mesh generation for geophysical models is developed, that is automated, robust and repeatable, quick-to-draft, rigorously verified and consistent to the source data throughout. This interprets the description above to execute a self-consistent spatial discretisation process, which is automatically validated to expected discrete characteristics and metrics.Comment: 18 pages, 10 figures, 1 table. Submitted for publication and under revie

    An empirical study of the “prototype walkthrough”: a studio-based activity for HCI education

    Get PDF
    For over a century, studio-based instruction has served as an effective pedagogical model in architecture and fine arts education. Because of its design orientation, human-computer interaction (HCI) education is an excellent venue for studio-based instruction. In an HCI course, we have been exploring a studio-based learning activity called the prototype walkthrough, in which a student project team simulates its evolving user interface prototype while a student audience member acts as a test user. The audience is encouraged to ask questions and provide feedback. We have observed that prototype walkthroughs create excellent conditions for learning about user interface design. In order to better understand the educational value of the activity, we performed a content analysis of a video corpus of 16 prototype walkthroughs held in two HCI courses. We found that the prototype walkthrough discussions were dominated by relevant design issues. Moreover, mirroring the justification behavior of the expert instructor, students justified over 80 percent of their design statements and critiques, with nearly one-quarter of those justifications having a theoretical or empirical basis. Our findings suggest that PWs provide valuable opportunities for students to actively learn HCI design by participating in authentic practice, and provide insight into how such opportunities can be best promoted

    Understanding the fidelity effect when evaluating games with children

    Get PDF
    There have been a number of studies that have compared evaluation results from prototypes of different fidelities but very few of these are with children. This paper reports a comparative study of three prototypes ranging from low fidelity to high fidelity within the context of mobile games, using a between subject design with 37 participants aged 7 to 9. The children played a matching game on either an iPad, a paper prototype using screen shots of the actual game or a sketched version. Observational data was captured to establish the usability problems, and two tools from the Fun Toolkit were used to measure user experience. The results showed that there was little difference for user experience between the three prototypes and very few usability problems were unique to a specific prototype. The contribution of this paper is that children using low-fidelity prototypes can effectively evaluate games of this genre and style

    Mobile learning: benefits of augmented reality in geometry teaching

    Get PDF
    As a consequence of the technological advances and the widespread use of mobile devices to access information and communication in the last decades, mobile learning has become a spontaneous learning model, providing a more flexible and collaborative technology-based learning. Thus, mobile technologies can create new opportunities for enhancing the pupils’ learning experiences. This paper presents the development of a game to assist teaching and learning, aiming to help students acquire knowledge in the field of geometry. The game was intended to develop the following competences in primary school learners (8-10 years): a better visualization of geometric objects on a plane and in space; understanding of the properties of geometric solids; and familiarization with the vocabulary of geometry. Findings show that by using the game, students have improved around 35% the hits of correct responses to the classification and differentiation between edge, vertex and face in 3D solids.This research was supported by the Arts and Humanities Research Council Design Star CDT (AH/L503770/1), the Portuguese Foundation for Science and Technology (FCT) projects LARSyS (UID/EEA/50009/2013) and CIAC-Research Centre for Arts and Communication.info:eu-repo/semantics/publishedVersio

    Using multimedia interfaces for speech therapy

    Get PDF

    Assessing the effectiveness of multi-touch interfaces for DP operation

    Get PDF
    Navigating a vessel using dynamic positioning (DP) systems close to offshore installations is a challenge. The operator's only possibility of manipulating the system is through its interface, which can be categorized as the physical appearance of the equipment and the visualization of the system. Are there possibilities of interaction between the operator and the system that can reduce strain and cognitive load during DP operations? Can parts of the system (e.g. displays) be physically brought closer to the user to enhance the feeling of control when operating the system? Can these changes make DP operations more efficient and safe? These questions inspired this research project, which investigates the use of multi-touch and hand gestures known from consumer products to directly manipulate the visualization of a vessel in the 3D scene of a DP system. Usability methodologies and evaluation techniques that are widely used in consumer market research were used to investigate how these interaction techniques, which are new to the maritime domain, could make interaction with the DP system more efficient and transparent both during standard and safety-critical operations. After investigating which gestures felt natural to use by running user tests with a paper prototype, the gestures were implemented into a Rolls-Royce DP system and tested in a static environment. The results showed that the test participants performed significantly faster using direct gesture manipulation compared to using traditional button/menu interaction. To support the results from these tests, further tests were carried out. The purpose is to investigate how gestures are performed in a moving environment, using a motion platform to simulate rough sea conditions. The key results and lessons learned from a collection of four user experiments, together with a discussion of the choice of evaluation techniques will be discussed in this paper
    • 

    corecore