3,398 research outputs found

    3D high definition video coding on a GPU-based heterogeneous system

    Get PDF
    H.264/MVC is a standard for supporting the sensation of 3D, based on coding from 2 (stereo) to N views. H.264/MVC adopts many coding options inherited from single view H.264/AVC, and thus its complexity is even higher, mainly because the number of processing views is higher. In this manuscript, we aim at an efficient parallelization of the most computationally intensive video encoding module for stereo sequences. In particular, inter prediction and its collaborative execution on a heterogeneous platform. The proposal is based on an efficient dynamic load balancing algorithm and on breaking encoding dependencies. Experimental results demonstrate the proposed algorithm's ability to reduce the encoding time for different stereo high definition sequences. Speed-up values of up to 90× were obtained when compared with the reference encoder on the same platform. Moreover, the proposed algorithm also provides a more energy-efficient approach and hence requires less energy than the sequential reference algorith

    Semi-hierarchical based motion estimation algorithm for the dirac video encoder

    Get PDF
    Having fast and efficient motion estimation is crucial in today’s advance video compression technique since it determines the compression efficiency and the complexity of a video encoder. In this paper, a method which we call semi-hierarchical motion estimation is proposed for the Dirac video encoder. By considering the fully hierarchical motion estimation only for a certain type of inter frame encoding, complexity of the motion estimation can be greatly reduced while maintaining the desirable accuracy. The experimental results show that the proposed algorithm gives two to three times reduction in terms of the number of SAD calculation compared with existing motion estimation algorithm of Dirac for the same motion estimation accuracy, compression efficiency and PSNR performance. Moreover, depending upon the complexity of the test sequence, the proposed algorithm has the ability to increase or decrease the search range in order to maintain the accuracy of the motion estimation to a certain level

    Low computational complexity variable block size (VBS) partitioning for motion estimation using the Walsh Hadamard transform (WHT)

    Get PDF
    Variable Block Size (VBS) based motion estimation has been adapted in state of the art video coding, such as H.264/AVC, VC-1. However, a low complexity H.264/AVC encoder cannot take advantage of VBS due to its power consumption requirements. In this paper, we present a VBS partition algorithm based on a binary motion edge map without either initial motion estimation or Rate-Distortion (R-D) optimization for selecting modes. The proposed algorithm uses the Walsh Hadamard Transform (WHT) to create a binary edge map, which provides a computational complexity cost effectiveness compared to other light segmentation methods typically used to detect the required region

    Joint Reconstruction of Multi-view Compressed Images

    Full text link
    The distributed representation of correlated multi-view images is an important problem that arise in vision sensor networks. This paper concentrates on the joint reconstruction problem where the distributively compressed correlated images are jointly decoded in order to improve the reconstruction quality of all the compressed images. We consider a scenario where the images captured at different viewpoints are encoded independently using common coding solutions (e.g., JPEG, H.264 intra) with a balanced rate distribution among different cameras. A central decoder first estimates the underlying correlation model from the independently compressed images which will be used for the joint signal recovery. The joint reconstruction is then cast as a constrained convex optimization problem that reconstructs total-variation (TV) smooth images that comply with the estimated correlation model. At the same time, we add constraints that force the reconstructed images to be consistent with their compressed versions. We show by experiments that the proposed joint reconstruction scheme outperforms independent reconstruction in terms of image quality, for a given target bit rate. In addition, the decoding performance of our proposed algorithm compares advantageously to state-of-the-art distributed coding schemes based on disparity learning and on the DISCOVER

    A toolset for the analysis and optimization of motion estimation algorithms and processors

    Get PDF

    Optimization of the motion estimation for parallel embedded systems in the context of new video standards

    Get PDF
    15 pagesInternational audienceThe effciency of video compression methods mainly depends on the motion compensation stage, and the design of effcient motion estimation techniques is still an important issue. An highly accurate motion estimation can significantly reduce the bit-rate, but involves a high computational complexity. This is particularly true for new generations of video compression standards, MPEG AVC and HEVC, which involves techniques such as different reference frames, sub-pixel estimation, variable block sizes. In this context, the design of fast motion estimation solutions is necessary, and can concerned two linked aspects: a high quality algorithm and its effcient implementation. This paper summarizes our main contributions in this domain. In particular, we first present the HME (Hierarchical Motion Estimation) technique. It is based on a multi-level refinement process where the motion estimation vectors are first estimated on a sub-sampled image. The multi-levels decomposition provides robust predictions and is particularly suited for variable block sizes motion estimations. The HME method has been integrated in a AVC encoder, and we propose a parallel implementation of this technique, with the motion estimation at pixel level performed by a DSP processor, and the sub-pixel refinement realized in an FPGA. The second technique that we present is called HDS for Hierarchical Diamond Search. It combines the multi-level refinement of HME, with a fast search at pixel-accuracy inspired by the EPZS method. This paper also presents its parallel implementation onto a multi-DSP platform and the its use in the HEVC context

    HDS, a real-time multi-DSP motion estimator for MPEG-4 H.264 AVC high definition video encoding

    Get PDF
    International audienceH.264 AVC video compression standard achieves high compression rates at the cost of a high encoder complexity. The encoder performances are greatly linked to the motion estimation operation which requires high computation power and memory bandwidth. High definition context magnifies the difficulty of a real-time implementation. EPZS and HME are two well-known motion estimation algorithms. Both EPZS and HME are implemented in a DSP and their performances are compared in terms of both quality and complexity. Based on these results, a new algorithm called HDS for Hierarchical Diamond Search is proposed. HDS motion estimation is integrated in a AVC encoder to extract timings and resulting video qualities reached. A real-time DSP implementation of H.264 quarter-pixel accuracy motion estimation is proposed for SD and HD video format. Furthermore HDS characteristics make this algorithm well suited for H.264 SVC real-time encoding applications
    corecore