9 research outputs found

    Multi-dimensional key generation of ICMetrics for cloud computing

    Get PDF
    Despite the rapid expansion and uptake of cloud based services, lack of trust in the provenance of such services represents a significant inhibiting factor in the further expansion of such service. This paper explores an approach to assure trust and provenance in cloud based services via the generation of digital signatures using properties or features derived from their own construction and software behaviour. The resulting system removes the need for a server to store a private key in a typical Public/Private-Key Infrastructure for data sources. Rather, keys are generated at run-time by features obtained as service execution proceeds. In this paper we investigate several potential software features for suitability during the employment of a cloud service identification system. The generation of stable and unique digital identity from features in Cloud computing is challenging because of the unstable operation environments that implies the features employed are likely to vary under normal operating conditions. To address this, we introduce a multi-dimensional key generation technology which maps from multi-dimensional feature space directly to a key space. Subsequently, a smooth entropy algorithm is developed to evaluate the entropy of key space

    SortAlgo-Metrics: Identification of Cloud-Based Server Via a Simple Algorithmic Analysis

    Get PDF
    This paper introduces a novel technique to detect spoof or fake software systems via the generation of a unique digital signature based on a direct analysis of the construction of the system. Specifically, we model a novel mechanism referred to as SortAlgo-Metrics analysis to identify cloud-based servers. Experimentally, we deployed four cloud-based servers to run four sorting algorithms in order to extract features that are employed to perform statistical analysis upon with the aim to obtain their metrics which has further underpin the investigation of their behaviours. The model has been validated by comparing training data and unknown data, and the result has shown server 2-4 have a strong identification with 96% probability, while server 1 with 55%, it is surmised that is could be as the result of insufficient sample data. However, if such a simple model can produce a result with this high probability, this shows that with more complex features and sufficient data pulled from cloud-based servers, SortAlgo-Metrics model could generate a higher degree of basis numbers for ICMetrics technology entropy key generation and other complex systems

    Secure device identification using multidimensional mapping

    Get PDF
    In this paper we investigate several potential hardware features from multiple devices for suitability during the employment of a device identification. The generation of stable and unique digital identity from features is challenging in device identification because of the unstable operation environments that implies the features employed are likely to vary under normal operating conditions. To address this, we introduce a novel multi-dimensional key generation technology which maps from multi-dimensional feature space directly to a key space. Furthermore, normalized distributions of features give the necessary data to model the characteristics, from which we derive intra-sample device feature distributions, and correlate the distinct features to generate a secure key to identify the device. Furthermore, to evaluate our experiment, we considerably carried out measurement using the mathematical & statistical modelling

    Robust Device Authentication Using Non-Standard Classification Features

    Get PDF
    This paper investigates the use of novel hardware features derived from the physical and behavioral characteristics of electronic devices to identify such devices uniquely. Importantly, the features examined exhibit non-standard and multimodal distributions which present a significant challenge to model and characterize. Specifically, the potency of four data classification methods is compared whilst employing such characteristics, proposed model Multivariate Gaussian Distribution (MVGD -address multimodality), Logistic Regression (LogR), Linear Discriminant Analysis (LDA), Support Vector Machine (SVM). Performance is measured based on its accuracy, precision, recall and f measure. The experimental results reveal that by addressing multimodal features with proposed model Multivariate Gaussian Distribution classifier, the overall performance is better than the other classifiers

    Data storage lock algorithm with cryptographic techniques

    Get PDF
    The cloud computing had its impact far and wide, and Enterprise solutions are getting migrated to different types of clouds. The services are delivered from the data centers which are located all over the world. As the data is roaming with less control in any data centers, data security issues in cloud are very challenging. Therefore we need multi-level authentication, data integrity, privacy and above all encryption to safeguard our data which is stored on to the cloud. The data and applications cannot be relocated to a virtual server without much degree of security concern as there can be much confidential data or mission-critical applications. In this paper, we propose Data Storage Lock Algorithm (DSLA) to store confidential data thereby provides secure data storage in cloud computing based on cryptographic standards

    Security and Privacy for the Internet of Things: An Overview of the Project

    Get PDF
    As the adoption of digital technologies expands, it becomes vital to build trust and confidence in the integrity of such technology. The SPIRIT project investigates the proof of concept of employing novel secure and privacy-ensuring techniques in services set-up in the Internet of Things (IoT) environment, aiming to increase the trust of users in IoTbased systems. The proposed system integrates three highly novel technology concepts developed by the consortium partners. Specifically, a technology, termed ICMetrics, for deriving encryption keys directly from the operating characteristics of digital devices; secondly, a technology based on a contentbased signature of user data in order to ensure the integrity of sent data upon arrival; a third technology, termed semantic firewall, which is able to allow or deny the transmission of data derived from an IoT device according to the information contained within the data and the information gathered about the requester

    Software Protection and Secure Authentication for Autonomous Vehicular Cloud Computing

    Get PDF
    Artificial Intelligence (AI) is changing every technology we deal with. Autonomy has been a sought-after goal in vehicles, and now more than ever we are very close to that goal. Vehicles before were dumb mechanical devices, now they are becoming smart, computerized, and connected coined as Autonomous Vehicles (AVs). Moreover, researchers found a way to make more use of these enormous capabilities and introduced Autonomous Vehicles Cloud Computing (AVCC). In these platforms, vehicles can lend their unused resources and sensory data to join AVCC. In this dissertation, we investigate security and privacy issues in AVCC. As background, we built our vision of a layer-based approach to thoroughly study state-of-the-art literature in the realm of AVs. Particularly, we examined some cyber-attacks and compared their promising mitigation strategies from our perspective. Then, we focused on two security issues involving AVCC: software protection and authentication. For the first problem, our concern is protecting client’s programs executed on remote AVCC resources. Such a usage scenario is susceptible to information leakage and reverse-engineering. Hence, we proposed compiler-based obfuscation techniques. What distinguishes our techniques, is that they are generic and software-based and utilize the intermediate representation, hence, they are platform agnostic, hardware independent and support different high level programming languages. Our results demonstrate that the control-flow of obfuscated code versions are more complicated making it unintelligible for timing side-channels. For the second problem, we focus on protecting AVCC from unauthorized access or intrusions, which may cause misuse or service disruptions. Therefore, we propose a strong privacy-aware authentication technique for users accessing AVCC services or vehicle sharing their resources with the AVCC. Our technique modifies robust function encryption, which protects stakeholder’s confidentiality and withstands linkability and “known-ciphertexts” attacks. Thus, we utilize an authentication server to search and match encrypted data by performing dot product operations. Additionally, we developed another lightweight technique, based on KNN algorithm, to authenticate vehicles at computationally limited charging stations using its owner’s encrypted iris data. Our security and privacy analysis proved that our schemes achieved privacy-preservation goals. Our experimental results showed that our schemes have reasonable computation and communications overheads and efficiently scalable

    Nature-inspired survivability: Prey-inspired survivability countermeasures for cloud computing security challenges

    Get PDF
    As cloud computing environments become complex, adversaries have become highly sophisticated and unpredictable. Moreover, they can easily increase attack power and persist longer before detection. Uncertain malicious actions, latent risks, Unobserved or Unobservable risks (UUURs) characterise this new threat domain. This thesis proposes prey-inspired survivability to address unpredictable security challenges borne out of UUURs. While survivability is a well-addressed phenomenon in non-extinct prey animals, applying prey survivability to cloud computing directly is challenging due to contradicting end goals. How to manage evolving survivability goals and requirements under contradicting environmental conditions adds to the challenges. To address these challenges, this thesis proposes a holistic taxonomy which integrate multiple and disparate perspectives of cloud security challenges. In addition, it proposes the TRIZ (Teorija Rezbenija Izobretatelskib Zadach) to derive prey-inspired solutions through resolving contradiction. First, it develops a 3-step process to facilitate interdomain transfer of concepts from nature to cloud. Moreover, TRIZ’s generic approach suggests specific solutions for cloud computing survivability. Then, the thesis presents the conceptual prey-inspired cloud computing survivability framework (Pi-CCSF), built upon TRIZ derived solutions. The framework run-time is pushed to the user-space to support evolving survivability design goals. Furthermore, a target-based decision-making technique (TBDM) is proposed to manage survivability decisions. To evaluate the prey-inspired survivability concept, Pi-CCSF simulator is developed and implemented. Evaluation results shows that escalating survivability actions improve the vitality of vulnerable and compromised virtual machines (VMs) by 5% and dramatically improve their overall survivability. Hypothesis testing conclusively supports the hypothesis that the escalation mechanisms can be applied to enhance the survivability of cloud computing systems. Numeric analysis of TBDM shows that by considering survivability preferences and attitudes (these directly impacts survivability actions), the TBDM method brings unpredictable survivability information closer to decision processes. This enables efficient execution of variable escalating survivability actions, which enables the Pi-CCSF’s decision system (DS) to focus upon decisions that achieve survivability outcomes under unpredictability imposed by UUUR

    Challenges and Opportunities in Applied System Innovation

    Get PDF
    This book introduces and provides solutions to a variety of problems faced by society, companies and individuals in a quickly changing and technology-dependent world. The wide acceptance of artificial intelligence, the upcoming fourth industrial revolution and newly designed 6G technologies are seen as the main enablers and game changers in this environment. The book considers these issues not only from a technological viewpoint but also on how society, labor and the economy are affected, leading to a circular economy that affects the way people design, function and deploy complex systems
    corecore