136,692 research outputs found

    Statistical Characterization and Classification of Astronomical Transients with Machine Learning in the era of the Vera C. Rubin Observatory

    Get PDF
    Astronomy has entered the multi-messenger data era and Machine Learning has found widespread use in a large variety of applications. The exploitation of synoptic (multi-band and multi-epoch) surveys, like LSST (Legacy Survey of Space and Time), requires an extensive use of automatic methods for data processing and interpretation. With data volumes in the petabyte domain, the discrimination of time-critical information has already exceeded the capabilities of human operators and crowds of scientists have extreme difficulty to manage such amounts of data in multi-dimensional domains. This work is focused on an analysis of critical aspects related to the approach, based on Machine Learning, to variable sky sources classification, with special care to the various types of Supernovae, one of the most important subjects of Time Domain Astronomy, due to their crucial role in Cosmology. The work is based on a test campaign performed on simulated data. The classification was carried out by comparing the performances among several Machine Learning algorithms on statistical parameters extracted from the light curves. The results make in evidence some critical aspects related to the data quality and their parameter space characterization, propaedeutic to the preparation of processing machinery for the real data exploitation in the incoming decade

    A Fault Diagnosis Scheme for Gearbox Based on Improved Entropy and Optimized Regularized Extreme Learning Machine

    Get PDF
    The performance of a gearbox is sensitive to failures, especially in the long-term high speed and heavy load field. However, the multi-fault diagnosis in gearboxes is a challenging problem because of the complex and non-stationary measured signal. To obtain fault information more fully and improve the accuracy of gearbox fault diagnosis, this paper proposes a feature extraction method, hierarchical refined composite multiscale fluctuation dispersion entropy (HRCMFDE) to extract the fault features of rolling bearing and the gear vibration signals at different layers and scales. On this basis, a novel fault diagnosis scheme for the gearbox based on HRCMFDE, ReliefF and grey wolf optimizer regularized extreme learning machine is proposed. Firstly, HRCMFDE is employed to extract the original features, the multi-frequency time information can be evaluated simultaneously, and the fault feature information can be extracted more fully. After that, ReliefF is used to screen the sensitive features from the high-dimensional fault features. Finally, the sensitive features are inputted into the optimized regularized extreme learning machine to identify the fault states of the gearbox. Through three different types of gearbox experiments, the experimental results confirm that the proposed method has better diagnostic performance and generalization, which can effectively and accurately identify the different fault categories of the gearbox and outperforms other contrastive methods.</p

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Deep Extreme Multi-label Learning

    Full text link
    Extreme multi-label learning (XML) or classification has been a practical and important problem since the boom of big data. The main challenge lies in the exponential label space which involves 2L2^L possible label sets especially when the label dimension LL is huge, e.g., in millions for Wikipedia labels. This paper is motivated to better explore the label space by originally establishing an explicit label graph. In the meanwhile, deep learning has been widely studied and used in various classification problems including multi-label classification, however it has not been properly introduced to XML, where the label space can be as large as in millions. In this paper, we propose a practical deep embedding method for extreme multi-label classification, which harvests the ideas of non-linear embedding and graph priors-based label space modeling simultaneously. Extensive experiments on public datasets for XML show that our method performs competitive against state-of-the-art result
    • …
    corecore