1,399 research outputs found

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Relational Reasoning Network (RRN) for Anatomical Landmarking

    Full text link
    Accurately identifying anatomical landmarks is a crucial step in deformation analysis and surgical planning for craniomaxillofacial (CMF) bones. Available methods require segmentation of the object of interest for precise landmarking. Unlike those, our purpose in this study is to perform anatomical landmarking using the inherent relation of CMF bones without explicitly segmenting them. We propose a new deep network architecture, called relational reasoning network (RRN), to accurately learn the local and the global relations of the landmarks. Specifically, we are interested in learning landmarks in CMF region: mandible, maxilla, and nasal bones. The proposed RRN works in an end-to-end manner, utilizing learned relations of the landmarks based on dense-block units and without the need for segmentation. For a given a few landmarks as input, the proposed system accurately and efficiently localizes the remaining landmarks on the aforementioned bones. For a comprehensive evaluation of RRN, we used cone-beam computed tomography (CBCT) scans of 250 patients. The proposed system identifies the landmark locations very accurately even when there are severe pathologies or deformations in the bones. The proposed RRN has also revealed unique relationships among the landmarks that help us infer several reasoning about informativeness of the landmark points. RRN is invariant to order of landmarks and it allowed us to discover the optimal configurations (number and location) for landmarks to be localized within the object of interest (mandible) or nearby objects (maxilla and nasal). To the best of our knowledge, this is the first of its kind algorithm finding anatomical relations of the objects using deep learning.Comment: 10 pages, 6 Figures, 3 Table

    Automated brain lesion segmentation in magnetic resonance images

    Get PDF
    In this thesis, we investigate the potential of automation in brain lesion segmentation in magnetic resonance images. We first develop a novel supervised method, which segments regions in magnetic resonance images using gated recurrent units, provided training data with pixel-wise annotations on what to segment is available. We improve on this method using the latest technical advances in the field of machine learning and insights on possible weaknesses of our method, and adapt it specifically for the task of lesion segmentation in the brain. We show the feasibility of our approach on multiple public benchmarks, consistently reaching positions at the top of the list of competing methods. Adapting our problem successfully to the problem of landmark localization, we show the generalizability of the approach. Moving away from large training cohorts with manual segmentations to data where it is only known that a certain pathology is present, we propose a weakly-supervised segmentation approach. Given a set of images with known pathology of a certain kind and a healthy reference set, our formulation can segment the difference of the two data distributions. Lastly, we show how information from already existing lesion maps can be extracted in a meaningful way by connecting lesions across time in longitudinal studies. We hence present a full tool set for the automated processing of lesions in magnetic resonance images

    Deep Learning in Cardiology

    Full text link
    The medical field is creating large amount of data that physicians are unable to decipher and use efficiently. Moreover, rule-based expert systems are inefficient in solving complicated medical tasks or for creating insights using big data. Deep learning has emerged as a more accurate and effective technology in a wide range of medical problems such as diagnosis, prediction and intervention. Deep learning is a representation learning method that consists of layers that transform the data non-linearly, thus, revealing hierarchical relationships and structures. In this review we survey deep learning application papers that use structured data, signal and imaging modalities from cardiology. We discuss the advantages and limitations of applying deep learning in cardiology that also apply in medicine in general, while proposing certain directions as the most viable for clinical use.Comment: 27 pages, 2 figures, 10 table

    Automatic detection of the aortic annular plane and coronary ostia from multidetector computed tomography

    Get PDF
    Anatomic landmark detection is crucial during preoperative planning of transcatheter aortic valve implantation (TAVI) to select the proper device size and assess the risk of complications. The detection is currently a time-consuming manual process influenced by the image quality and subject to operator variability. In this work, we propose a novel automatic method to detect the relevant aortic landmarks from MDCT images using deep learning techniques. We trained three convolutional neural networks (CNNs) with 344 multidetector computed tomography (MDCT) acquisitions to detect five anatomical landmarks relevant for TAVI planning: the three basal attachment points of the aortic valve leaflets and the left and right coronary ostia. The detection strategy used these three CNN models to analyse a single MDCT image and yield three segmentation volumes as output. These segmentation volumes were averaged into one final segmentation volume, and the final predicted landmarks were obtained during a postprocessing step. Finally, we constructed the aortic annular plane, defined by the three predicted hinge points, and measured the distances from this plane to the predicted coronary ostia (i.e., coronary height). The methodology was validated on 100 patients. The automatic landmark detection was able to detect all the landmarks and showed high accuracy as the median distance between the ground truth and predictions is lower than the interobserver variations (1.5 mm [1.1-2.1], 2.0 mm [1.3-2.8] with a paired difference -0.5 +/- 1.3 mm and p value <0.001). Furthermore, a high correlation is observed between predicted and manually measured coronary heights (for both R-2 = 0.8). The image analysis time per patient was below one second. The proposed method is accurate, fast, and reproducible. Embedding this tool based on deep learning in the preoperative planning routine may have an impact in the TAVI environments by reducing the time and cost and improving accuracy

    Synergistic Visualization And Quantitative Analysis Of Volumetric Medical Images

    Get PDF
    The medical diagnosis process starts with an interview with the patient, and continues with the physical exam. In practice, the medical professional may require additional screenings to precisely diagnose. Medical imaging is one of the most frequently used non-invasive screening methods to acquire insight of human body. Medical imaging is not only essential for accurate diagnosis, but also it can enable early prevention. Medical data visualization refers to projecting the medical data into a human understandable format at mediums such as 2D or head-mounted displays without causing any interpretation which may lead to clinical intervention. In contrast to the medical visualization, quantification refers to extracting the information in the medical scan to enable the clinicians to make fast and accurate decisions. Despite the extraordinary process both in medical visualization and quantitative radiology, efforts to improve these two complementary fields are often performed independently and synergistic combination is under-studied. Existing image-based software platforms mostly fail to be used in routine clinics due to lack of a unified strategy that guides clinicians both visually and quan- titatively. Hence, there is an urgent need for a bridge connecting the medical visualization and automatic quantification algorithms in the same software platform. In this thesis, we aim to fill this research gap by visualizing medical images interactively from anywhere, and performing a fast, accurate and fully-automatic quantification of the medical imaging data. To end this, we propose several innovative and novel methods. Specifically, we solve the following sub-problems of the ul- timate goal: (1) direct web-based out-of-core volume rendering, (2) robust, accurate, and efficient learning based algorithms to segment highly pathological medical data, (3) automatic landmark- ing for aiding diagnosis and surgical planning and (4) novel artificial intelligence algorithms to determine the sufficient and necessary data to derive large-scale problems
    • …
    corecore