34 research outputs found

    A comprehensive study on pathfinding techniques for robotics and video games

    Get PDF
    This survey provides an overview of popular pathfinding algorithms and techniques based on graph generation problems. We focus on recent developments and improvements in existing techniques and examine their impact on robotics and the video games industry. We have categorized pathfinding algorithms based on a 2D/3D environment search. The aim of this paper is to provide researchers with a thorough background on the progress made in the last 10 years in this field, summarize the principal techniques, and describe their results. We also give our expectations for future trends in this field and discuss the possibility of using pathfinding techniques in more extensive areas

    Performance Evaluation of Pathfinding Algorithms

    Get PDF
    Pathfinding is the search for an optimal path from a start location to a goal location in a given environment. In Artificial Intelligence pathfinding algorithms are typically designed as a kind of graph search. These algorithms are applicable in a wide variety of applications such as computer games, robotics, networks, and navigation systems. The performance of these algorithms is affected by several factors such as the problem size, path length, the number and distribution of obstacles, data structures and heuristics. When new pathfinding algorithms are proposed in the literature, their performance is often investigated empirically (if at all). Proper experimental design and analysis is crucial to provide an informative and non- misleading evaluation. In this research, we survey many papers and classify them according to their methodology, experimental design, and analytical techniques. We identify some weaknesses in these areas that are all too frequently found in reported approaches. We first found the pitfalls in pathfinding research and then provide solutions by creating example problems. Our research shows that spurious effects, control conditions provide solutions to avoid these pitfalls

    A scalable architecture for ordered parallelism

    Get PDF
    We present Swarm, a novel architecture that exploits ordered irregular parallelism, which is abundant but hard to mine with current software and hardware techniques. In this architecture, programs consist of short tasks with programmer-specified timestamps. Swarm executes tasks speculatively and out of order, and efficiently speculates thousands of tasks ahead of the earliest active task to uncover ordered parallelism. Swarm builds on prior TLS and HTM schemes, and contributes several new techniques that allow it to scale to large core counts and speculation windows, including a new execution model, speculation-aware hardware task management, selective aborts, and scalable ordered commits. We evaluate Swarm on graph analytics, simulation, and database benchmarks. At 64 cores, Swarm achieves 51--122× speedups over a single-core system, and out-performs software-only parallel algorithms by 3--18×.National Science Foundation (U.S.) (Award CAREER-145299

    Toward human-like pathfinding with hierarchical approaches and the GPS of the brain theory

    Get PDF
    Pathfinding for autonomous agents and robots has been traditionally driven by finding optimal paths. Where typically optimality means finding the shortest path between two points in a given environment. However, optimality may not always be strictly necessary. For example, in the case of video games, often computing the paths for non-player characters (NPC) must be done under strict time constraints to guarantee real time simulation. In those cases, performance is more important than finding the shortest path, specially because often a sub-optimal path can be just as convincing from the point of view of the player. When simulating virtual humanoids, pathfinding has also been used with the same goal: finding the shortest path. However, humans very rarely follow precise shortest paths, and thus there are other aspects of human decision making and path planning strategies that should be incorporated in current simulation models. In this thesis we first focus on improving performance optimallity to handle as many virtual agents as possible, and then introduce neuroscience research to propose pathfinding algorithms that attempt to mimic humans in a more realistic manner.In the case of simulating NPCs for video games, one of the main challenges is to compute paths as efficiently as possible for groups of agents. As both the size of the environments and the number of autonomous agents increase, it becomes harder to obtain results in real time under the constraints of memory and computing resources. For this purpose we explored hierarchical approaches for two reasons: (1) they have shown important performance improvements for regular grids and other abstract problems, and (2) humans tend to plan trajectories also following an topbottom abstraction, focusing first on high level location and then refining the path as they move between those high level locations. Therefore, we believe that hierarchical approaches combine the best of our two goals: improving performance for multi-agent pathfinding and achieving more human-like pathfinding. Hierarchical approaches, such as HNA* (Hierarchical A* for Navigation Meshes) can compute paths more efficiently, although only for certain configurations of the hierarchy. For other configurations, the method suffers from a bottleneck in the step that connects the Start and Goal positions with the hierarchy. This bottleneck can drop performance drastically.In this thesis we present different approaches to solve the HNA* bottleneck and thus obtain a performance boost for all hierarchical configurations. The first method relies on further memory storage, and the second one uses parallelism on the GPU. Our comparative evaluation shows that both approaches offer speed-ups as high as 9x faster than A*, and show no limitations based on hierarchical configuration. Then we further exploit the potential of CUDA parallelism, to extend our implementation to HNA* for multi-agent path finding. Our method can now compute paths for over 500K agents simultaneously in real-time, with speed-ups above 15x faster than a parallel multi-agent implementation using A*. We then focus on studying neurosience research to learn about the way that humans build mental maps, in order to propose novel algorithms that take those finding into account when simulating virtual humans. We propose a novel algorithm for path finding that is inspired by neuroscience research on how the brain learns and builds cognitive maps. Our method represents the space as a hexagonal grid, based on the GPS of the brain theory, and fires memory cells as counters. Our path finder then combines a method for exploring unknown environments while building such a cognitive map, with an A* search using a modified heuristic that takes into account the GPS of the brain cognitive map.El problema de Pathfinding para agentes autónomos o robots, ha consistido tradicionalmente en encontrar un camino óptimo, donde por óptimo se entiende el camino de distancia mínima entre dos posiciones de un entorno. Sin embargo, en ocasiones puede que no sea estrictamente necesario encontrar una solución óptima. Para ofrecer la simulación de multitudes de agentes autónomos moviéndose en tiempo real, es necesario calcular sus trayectorias bajo condiciones estrictas de tiempo de computación, pero no es fundamental que las soluciones sean las de distancia mínima ya que, con frecuencia, el observador no apreciará la diferencia entre un camino óptimo y un sub-óptimo. Por tanto, suele ser suficiente con que la solución encontrada sea visualmente creíble para el observado. Cuando se simulan humanoides virtuales en aplicaciones de realidad virtual que requieren avatares que simulen el comportamiento de los humanos, se tiende a emplear los mismos algoritmos que en video juegos, con el objetivo de encontrar caminos de distancia mínima. Pero si realmente queremos que los avatares imiten el comportamiento humano, tenemos que tener en cuenta que, en el mundo real, los humanos rara vez seguimos precisamente el camino más corto, y por tanto se deben considerar otros aspectos que influyen en la toma de decisiones de los humanos y la selección de rutas en el mundo real. En esta tesis nos centraremos primero en mejorar el rendimiento de la búsqueda de caminos para poder simular grandes números de humanoides virtuales autónomos, y a continuación introduciremos conceptos de investigación con mamíferos en neurociencia, para proponer soluciones al problema de pathfinding que intenten imitar con mayor realismo, el modo en el que los humanos navegan el entorno que les rodea. A medida que aumentan tanto el tamaño de los entornos virtuales como el número de agentes autónomos, resulta más difícil obtener soluciones en tiempo real, debido a las limitaciones de memoria y recursos informáticos. Para resolver este problema, en esta tesis exploramos enfoques jerárquicos porque consideramos que combinan dos objetivos fundamentales: mejorar el rendimiento en la búsqueda de caminos para multitudes de agentes y lograr una búsqueda de caminos similar a la de los humanos. El primer método presentado en esta tesis se basa en mejorar el rendimiento del algoritmo HNA* (Hierarchical A* for Navigation Meshes) incrementando almacenamiento de datos en memoria, y el segundo utiliza el paralelismo para mejorar drásticamente el rendimiento. La evaluación cuantitativa realizada en esta tesis, muestra que ambos enfoques ofrecen aceleraciones que pueden llegar a ser hasta 9 veces más rápidas que el algoritmo A* y no presentan limitaciones debidas a la configuración jerárquica. A continuación, aprovechamos aún más el potencial del paralelismo ofrecido por CUDA para extender nuestra implementación de HNA* a sistemas multi-agentes. Nuestro método permite calcular caminos simultáneamente y en tiempo real para más de 500.000 agentes, con una aceleración superior a 15 veces la obtenida por una implementación paralela del algoritmo A*. Por último, en esta tesis nos hemos centrado en estudiar los últimos avances realizados en el ámbito de la neurociencia, para comprender la manera en la que los humanos construyen mapas mentales y poder así proponer nuevos algoritmos que imiten de forma más real el modo en el que navegamos los humanos. Nuestro método representa el espacio como una red hexagonal, basada en la distribución de ¿place cells¿ existente en el cerebro, e imita las activaciones neuronales como contadores en dichas celdas. Nuestro buscador de rutas combina un método para explorar entornos desconocidos mientras construye un mapa cognitivo hexagonal, utilizando una búsqueda A* con una nueva heurística adaptada al mapa cognitivo del cerebro y sus contadores

    Influence map-based pathfinding algorithms in video games

    Get PDF
    Path search algorithms, i.e., pathfinding algorithms, are used to solve shortest path problems by intelligent agents, ranging from computer games and applications to robotics. Pathfinding is a particular kind of search, in which the objective is to find a path between two nodes. A node is a point in space where an intelligent agent can travel. Moving agents in physical or virtual worlds is a key part of the simulation of intelligent behavior. If a game agent is not able to navigate through its surrounding environment without avoiding obstacles, it does not seem intelligent. Hence the reason why pathfinding is among the core tasks of AI in computer games. Pathfinding algorithms work well with single agents navigating through an environment. In realtime strategy (RTS) games, potential fields (PF) are used for multi-agent navigation in large and dynamic game environments. On the contrary, influence maps are not used in pathfinding. Influence maps are a spatial reasoning technique that helps bots and players to take decisions about the course of the game. Influence map represent game information, e.g., events and faction power distribution, and is ultimately used to provide game agents knowledge to take strategic or tactical decisions. Strategic decisions are based on achieving an overall goal, e.g., capture an enemy location and win the game. Tactical decisions are based on small and precise actions, e.g., where to install a turret, where to hide from the enemy. This dissertation work focuses on a novel path search method, that combines the state-of-theart pathfinding algorithms with influence maps in order to achieve better time performance and less memory space performance as well as more smooth paths in pathfinding.Algoritmos de pathfinding são usados por agentes inteligentes para resolver o problema do caminho mais curto, desde a àrea jogos de computador até à robótica. Pathfinding é um tipo particular de algoritmos de pesquisa, em que o objectivo é encontrar o caminho mais curto entre dois nós. Um nó é um ponto no espaço onde um agente inteligente consegue navegar. Agentes móveis em mundos físicos e virtuais são uma componente chave para a simulação de comportamento inteligente. Se um agente não for capaz de navegar no ambiente que o rodeia sem colidir com obstáculos, não aparenta ser inteligente. Consequentemente, pathfinding faz parte das tarefas fundamentais de inteligencia artificial em vídeo jogos. Algoritmos de pathfinding funcionam bem com agentes únicos a navegar por um ambiente. Em jogos de estratégia em tempo real (RTS), potential fields (PF) são utilizados para a navegação multi-agente em ambientes amplos e dinâmicos. Pelo contrário, os influence maps não são usados no pathfinding. Influence maps são uma técnica de raciocínio espacial que ajudam agentes inteligentes e jogadores a tomar decisões sobre o decorrer do jogo. Influence maps representam informação de jogo, por exemplo, eventos e distribuição de poder, que são usados para fornecer conhecimento aos agentes na tomada de decisões estratégicas ou táticas. As decisões estratégicas são baseadas em atingir uma meta global, por exemplo, a captura de uma zona do inimigo e ganhar o jogo. Decisões táticas são baseadas em acções pequenas e precisas, por exemplo, em que local instalar uma torre de defesa, ou onde se esconder do inimigo. Esta dissertação foca-se numa nova técnica que consiste em combinar algoritmos de pathfinding com influence maps, afim de alcançar melhores performances a nível de tempo de pesquisa e consumo de memória, assim como obter caminhos visualmente mais suaves

    Optimal Power Delivery Strategy in Modern VLSI Design

    Get PDF
    Department of Electrical EngineeringIn a modern very-large-scale integration (VLSI) designs, heterogeneous architectural structures and various three-dimensional (3D) integration methods have been used in a hybrid manner. Recently, the industry has combined 3D VLSI technology with the heterogeneous technology of modern VLSI called chiplet. The 3D heterogeneous architectural structure is growing attention because it reduces costs and time-to-market by increasing manufacturing yield with high integration rate and modularization. However, a main design concern of heterogeneous 3D architectural structure is power management for lowering power consumption with maintaining the required power integrity from IR drop. Although the low-power design can be realized in front-end-of-line level by reduced power supply complementary metal???oxide???semiconductor technologies, the overall low-power system performance is available with a proper design of power delivery network (PDN) for chip-level modules and system-level architectural structure. Thus, there is a demand for both the coanalysis and optimization for both chip-level and system-level. We analyzed and optimized power delivery on-chip in various 3D integration environments, and we also have proposed a chip-package-PCB coanalysis methodology at the system level. For through-silicon-via (TSV)-based 3D integration circuit (IC), We have investigated and analyzed the voltage noise in a multi-layer 3D stacking with partial element equivalent circuit (PEEC)-based on-chip PDN and frequency-dependent TSV models. We also have proposed a wire-added multi-paired on-chip PDN structure to reduce voltage noise to reduce IR drop. The performance of TSV-based 3D ICs has also been improved by reducing wake-up time through our proposed adaptive power gating strategy with tapered TSVs. For die-to-wafer 3D IC, we have proposed a power delivery pathfinding methodology, which seeks to identify a nearly optimal PDN for a given design and PDN specification. Our pathfinding methodology exploits models for routability and worst IR drop, which helps reducing iterations between PDN design and circuit design in 3D IC implementation. We also have extended the observation to system-level, we have proposed a power integrity coanalysis methodology for multiple power domains in high-frequency memory systems. Our coanalysis methodology can analyze the tendencies in power integrity by using parametric methods with consideration of package-on-package integration. We have proved that our methodology can predict similar peak-to-peak ripple voltages that are comparable with the realistic simulations of high-speed low-power memory interfaces. Finally, we have proposed analysis and optimization methodologies that are generally applicable to various integration methods used in modern VLSI designs as computer-aided-design-based solutions.clos

    Graphics Processing Unit-Based Computer-Aided Design Algorithms for Electronic Design Automation

    Get PDF
    The electronic design automation (EDA) tools are a specific set of software that play important roles in modern integrated circuit (IC) design. These software automate the design processes of IC with various stages. Among these stages, two important EDA design tools are the focus of this research: floorplanning and global routing. Specifically, the goal of this study is to parallelize these two tools such that their execution time can be significantly shortened on modern multi-core and graphics processing unit (GPU) architectures. The GPU hardware is a massively parallel architecture, enabling thousands of independent threads to execute concurrently. Although a small set of EDA tools can benefit from using GPU to accelerate their speed, most algorithms in this field are designed with the single-core paradigm in mind. The floorplanning and global routing algorithms are among the latter, and difficult to render any speedup on the GPU due to their inherent sequential nature. This work parallelizes the floorplanning and global routing algorithm through a novel approach and results in significant speedups for both tools implemented on the GPU hardware. Specifically, with a complete overhaul of solution space and design space exploration, a GPU-based floorplanning algorithm is able to render 4-166X speedup, while achieving similar or improved solutions compared with the sequential algorithm. The GPU-based global routing algorithm is shown to achieve significant speedup against existing state-of-the-art routers, while delivering competitive solution quality. Importantly, this parallel model for global routing renders a stable solution that is independent from the level of parallelism. In summary, this research has shown that through a design paradigm overhaul, sequential algorithms can also benefit from the massively parallel architecture. The findings of this study have a positive impact on the efficiency and design quality of modern EDA design flow

    Heuristinen yhteistyöhaku ohjelmistoagenttien avulla

    Get PDF
    Parallel algorithms extend the notion of sequential algorithms by permitting the simultaneous execution of independent computational steps. When the independence constraint is lifted and executions can freely interact and intertwine, parallel algorithms become concurrent and may behave in a nondeterministic way. Parallelism has over the years slowly risen to be a standard feature of high-performance computing, but concurrency, being even harder to reason about, is still considered somewhat notorious and undesirable. As such, the implicit randomness available in concurrency is rarely made use of in algorithms. This thesis explores concurrency as a means to facilitate algorithmic cooperation in a heuristic search setting. We use agents, cooperating software entities, to build a single-source shortest path (SSSP) search algorithm based on parallelized A∗, dubbed A!. We show how asynchronous information sharing gives rise to implicit randomness, which cooperating agents use in A! to maintain a collective secondary ranking heuristic and focus search space exploration. We experimentally show that A! consistently outperforms both vanilla A∗ and a noncooperative, explicitly randomized A∗ variant in the standard n-puzzle sliding tile problem context. The results indicate that A! performance increases with the addition of more agents, but that the returns are diminishing. A! is observed to be sensitive to heuristic improvement, but also constrained by search overhead from limited path diversity. A hybrid approach combining both implicit and explicit randomness is also evaluated and found to not be an improvement over A! alone. The studied A! implementation based on vanilla A∗ is not as such competitive against state-of-the-art parallel A∗ algorithms, but rather a first step in applying concurrency to speed up heuristic SSSP search. The empirical results imply that concurrency and nondeterministic cooperation can successfully be harnessed in algorithm design, inviting further inquiry into algorithms of this kind.Rinnakkaisalgoritmit sallivat useiden riippumattomien ohjelmakäskyjen suorittamisen samanaikaisesti. Kun riippumattomuusrajoite poistetaan ja käskyjen suorittamisen järjestystä ei hallita, rinnakkaisalgoritmit voivat käskysuoritusten samanaikaisuuden vuoksi käyttäytyä epädeterministisellä tavalla. Rinnakkaisuus on vuosien saatossa noussut tärkeään rooliin tietotekniikassa ja samalla hallitsematonta samanaikaisuutta on yleisesti alettu pitää ongelmallisena ja ei-toivottuna. Samanaikaisuudesta kumpuavaa epäsuoraa satunnaisuutta hyödynnetään harvoin algoritmeissa. Tämä työ käsittelee käskysuoritusten samanaikaisuuden hyödyntämistä osana heuristista yhteistyöhakua. Työssä toteutetaan agenttien, yhteistyökykyisten ohjelmistokomponenttien, avulla uudenlainen A!-hakualgoritmi. A! perustuu rinnakkaiseen A∗ -algoritmiin, joka ratkaisee yhden lähteen lyhimmän polun hakuongelman. Työssä näytetään, miten ajastamaton viestintä agenttien välillä johtaa epäsuoraan satunnaisuuteen, jota A!-agentit kollektiivisesti hyödyntävät toissijaisen järjestämisheuristiikan ylläpitämisessä ja edelleen haun kohdentamisessa. Työssä näytetään kokeellisesti, kuinka A! suoriutuu niin tavanomaista kuin satunnaistettuakin A∗ -algoritmia paremmin n-puzzle pulmapelin ratkaisemisessa. Tulokset osoittavat, että A!-algoritmin suorituskyky kasvaa lisäagenttien myötä, mutta myös sen, että hyöty on joka lisäyksen jälkeen suhteellisesti pienempi. A! osoittautuu heuristiikan hyödyntämisen osalta verrokkeja herkemmäksi, mutta myös etsintäpolkujen monimuotoisuuden kannalta vaatimattomaksi. Yksinkertaisen suoraa ja epäsuoraa satunnaisuutta yhdistävän hybridialgoritmin ei todeta tuovan lisäsuorituskykyä A!-algoritmiin verrattuna. Empiiriset kokeet osoittavat, että hallitsematonta samanaikaisuutta ja epädeterminististä yhteistyötä voi onnistuneesti hyödyntää algoritmisuunnittelussa, mikä kannustaa lisätutkimuksiin näitä soveltavan algoritmiikan parissa

    Efficacy of hardware scheduling on current generation quantum computers

    Get PDF
    Quantum computing is a rapidly advancing field of computer science that is increasingly becoming more practical. With these devices becoming more realistic, frameworks are needed by which the hardware resources, both quantum and classical, of quantum computers can be utilized more efficiently. This research aims to fill gaps in the research examining the effectiveness of hardware scheduling on the current generation of quantum computers. A hardware scheduling strategy is implemented using the A* search algorithm for routing qubits to conform with hardware limitations, and this algorithm is tested against a wide variety of quantum programs and devices. The effectiveness of the scheduler is determined through analysis of metrics obtained from the scheduling process. This particular scheduler proved to be effective for most of the tested algorithms and efficient for some, making it useful for general purposes, though some potential sources of improvement could increase the number of algorithms it is efficient for

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so
    corecore