6,682 research outputs found

    Multi-class ROC analysis from a multi-objective optimisation perspective

    Get PDF
    Copyright © 2006 Elsevier. NOTICE: this is the author’s version of a work that was accepted for publication in Pattern Recognition Letters . Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Pattern Recognition Letters, Vol. 27 Issue 8 (2006), DOI: 10.1016/j.patrec.2005.10.016Notes: Receiver operating characteristics (ROC) are traditionally used for assessing and tuning classifiers discriminating between two classes. This paper is the first to set ROC analysis in a multi-objective optimisation framework and thus generalise ROC curves to any number of classes, showing how multi-objective optimisation may be used to optimise classifier performance. An important new result is that the appropriate measure for assessing overall classifier quality is the Gini coefficient, rather than the volume under the ROC surface as previously thought. The method is currently being exploited in a KTP project with AI Corporation on detecting credit card fraud.The receiver operating characteristic (ROC) has become a standard tool for the analysis and comparison of classifiers when the costs of misclassification are unknown. There has been relatively little work, however, examining ROC for more than two classes. Here we discuss and present an extension to the standard two-class ROC for multi-class problems. We define the ROC surface for the Q-class problem in terms of a multi-objective optimisation problem in which the goal is to simultaneously minimise the Q(Q − 1) misclassification rates, when the misclassification costs and parameters governing the classifier’s behaviour are unknown. We present an evolutionary algorithm to locate the Pareto front—the optimal trade-off surface between misclassifications of different types. The use of the Pareto optimal surface to compare classifiers is discussed and we present a straightforward multi-class analogue of the Gini coefficient. The performance of the evolutionary algorithm is illustrated on a synthetic three class problem, for both k-nearest neighbour and multi-layer perceptron classifiers

    A unifying view for performance measures in multi-class prediction

    Get PDF
    In the last few years, many different performance measures have been introduced to overcome the weakness of the most natural metric, the Accuracy. Among them, Matthews Correlation Coefficient has recently gained popularity among researchers not only in machine learning but also in several application fields such as bioinformatics. Nonetheless, further novel functions are being proposed in literature. We show that Confusion Entropy, a recently introduced classifier performance measure for multi-class problems, has a strong (monotone) relation with the multi-class generalization of a classical metric, the Matthews Correlation Coefficient. Computational evidence in support of the claim is provided, together with an outline of the theoretical explanation

    Formulation and comparison of multi-class ROC surfaces

    Get PDF
    2nd ROCML workshop, held within the 22nd International Conference on Machine Learning (ICML 2005), Bonn, Germany, 7-11 August 2005The Receiver Operating Characteristic (ROC) has become a standard tool for the analysis and comparison of classifiers when the costs of misclassification are unknown. There has been relatively little work, however, examining ROC for more than two classes. Here we define the ROC surface for the Q-class problem in terms of a multi-objective optimisation problem in which the goal is to simultaneously minimise the Q(Q − 1) mis-classification rates, when the misclassification costs and parameters governing the classifier’s behaviour are unknown. We present an evolutionary algorithm to locate the optimal trade-off surface between misclassifications of different types. The performance of the evolutionary algorithm is illustrated on a synthetic three class problem. In addition the use of the Pareto optimal surface to compare classifiers is discussed, and we present a straightforward multi-class analogue of the Gini coefficient. This is illustrated on synthetic and standard machine learning dat

    Multi-objective optimisation for receiver operating characteristic analysis

    Get PDF
    Copyright © 2006 Springer-Verlag Berlin Heidelberg. The final publication is available at link.springer.comBook title: Multi-Objective Machine LearningSummary Receiver operating characteristic (ROC) analysis is now a standard tool for the comparison of binary classifiers and the selection operating parameters when the costs of misclassification are unknown. This chapter outlines the use of evolutionary multi-objective optimisation techniques for ROC analysis, in both its traditional binary classification setting, and in the novel multi-class ROC situation. Methods for comparing classifier performance in the multi-class case, based on an analogue of the Gini coefficient, are described, which leads to a natural method of selecting the classifier operating point. Illustrations are given concerning synthetic data and an application to Short Term Conflict Alert

    Bayesian neural network learning for repeat purchase modelling in direct marketing.

    Get PDF
    We focus on purchase incidence modelling for a European direct mail company. Response models based on statistical and neural network techniques are contrasted. The evidence framework of MacKay is used as an example implementation of Bayesian neural network learning, a method that is fairly robust with respect to problems typically encountered when implementing neural networks. The automatic relevance determination (ARD) method, an integrated feature of this framework, allows to assess the relative importance of the inputs. The basic response models use operationalisations of the traditionally discussed Recency, Frequency and Monetary (RFM) predictor categories. In a second experiment, the RFM response framework is enriched by the inclusion of other (non-RFM) customer profiling predictors. We contribute to the literature by providing experimental evidence that: (1) Bayesian neural networks offer a viable alternative for purchase incidence modelling; (2) a combined use of all three RFM predictor categories is advocated by the ARD method; (3) the inclusion of non-RFM variables allows to significantly augment the predictive power of the constructed RFM classifiers; (4) this rise is mainly attributed to the inclusion of customer\slash company interaction variables and a variable measuring whether a customer uses the credit facilities of the direct mailing company.Marketing; Companies; Models; Model; Problems; Neural networks; Networks; Variables; Credit;

    Multi-Objective Supervised Learning

    Get PDF
    Copyright © 2008 Springer-Verlag Berlin Heidelberg. The final publication is available at link.springer.comBook title: Multiobjective Problem Solving from NatureExtended version of the 2006 workshop paper presented at the Workshop on Multiobjective Problem-Solving from Nature, 9th International Conference on Parallel Problem Solving from Nature (PPSN IX), Reykjavik, Iceland, 9-13 September 2006; see: http://hdl.handle.net/10871/11785This chapter sets out a number of the popular areas in multiobjective supervised learning. It gives empirical examples of model complexity optimization and competing error terms, and presents the recent advances in multi-class receiver operating characteristic analysis enabled by multiobjective optimization. It concludes by highlighting some specific areas of interest/concern when dealing with multiobjective supervised learning problems, and sets out future areas of potential research

    Multi-Objective Supervised Learning

    Get PDF
    Workshop paper presented at the Workshop on Multiobjective Problem-Solving from Nature, 9th International Conference on Parallel Problem Solving from Nature (PPSN IX), Reykjavik, Iceland, 9-13 September 2006An extended version of this paper was subsequently published as a chapter in Multiobjective Problem Solving from Nature (Springer), pp. 155-176; see: http://hdl.handle.net/10871/11569This paper sets out a number of the popular areas from the literature in multi-objective supervised learning, along with simple examples. It continues by highlighting some specific areas of interest/concern when dealing with multi-objective supervised learning problems, and highlights future areas of potential research

    On the efficient use of uncertainty when performing expensive ROC optimisation.

    Get PDF
    Copyright © 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.IEEE Congress on Evolutionary Computation 2008 (CEC 2008). (IEEE World Congress on Computational Intelligence), Hong Kong, 1-6 June 2008When optimising receiver operating characteristic (ROC) curves there is an inherent degree of uncertainty associated with the operating point evaluation of a model parameterisation x. This is due to the finite amount of training data used to evaluate the true and false positive rates of x. The uncertainty associated with any particular x can be reduced, but only at the computation cost of evaluating more data. Here we explicitly represent this uncertainty through the use of probabilistically non-dominated archives, and show how expensive ROC optimisation problems may be tackled by only evaluating a small subset of the available data at each generation of an optimisation algorithm. Illustrative results are given on data sets from the well known UCI machine learning repository

    A short note on the efficient random sampling of the multi-dimensional pyramid between a simplex and the origin lying in the unit hypercube

    Get PDF
    Copyright © 2005 University of ExeterWhen estimating how much better a classifier is than random allocation in Q-class ROC analysis, we need to sample from a particular region of the unit hypercube: specifically the region, in the unit hypercube, which lies between the Q − 1 simplex in Q(Q − 1) space and the origin. This report introduces a fast method for randomly sampling this volume, and is compared to rejection sampling of uniform draws from the unit hypercube. The new method is based on sampling from a Dirichlet distribution and shifting these samples using a draw from the Uniform distribution. We show that this method generates random samples within the volume at a probability ≈ 1/(Q(Q − 1)), as opposed to ≈ (Q − 1)Q(Q − 1) /(Q(Q − 1))! for rejection sampling from the unit hypercube. The vast reduction in rejection rates of this method means comparing classifiers in a Q-class ROC framework is now feasible, even for large Q.Department of Computer Science, University of Exete
    • …
    corecore