9,214 research outputs found

    MilliSonic: Pushing the Limits of Acoustic Motion Tracking

    Full text link
    Recent years have seen interest in device tracking and localization using acoustic signals. State-of-the-art acoustic motion tracking systems however do not achieve millimeter accuracy and require large separation between microphones and speakers, and as a result, do not meet the requirements for many VR/AR applications. Further, tracking multiple concurrent acoustic transmissions from VR devices today requires sacrificing accuracy or frame rate. We present MilliSonic, a novel system that pushes the limits of acoustic based motion tracking. Our core contribution is a novel localization algorithm that can provably achieve sub-millimeter 1D tracking accuracy in the presence of multipath, while using only a single beacon with a small 4-microphone array.Further, MilliSonic enables concurrent tracking of up to four smartphones without reducing frame rate or accuracy. Our evaluation shows that MilliSonic achieves 0.7mm median 1D accuracy and a 2.6mm median 3D accuracy for smartphones, which is 5x more accurate than state-of-the-art systems. MilliSonic enables two previously infeasible interaction applications: a) 3D tracking of VR headsets using the smartphone as a beacon and b) fine-grained 3D tracking for the Google Cardboard VR system using a small microphone array

    Performance Investigation on Scan-On-Receive and Adaptive Digital Beam-Forming for High-Resolution Wide-Swath Synthetic Aperture Radar

    Get PDF
    The work investigates the performance of the Smart Multi-Aperture Radar Technique (SMART) Synthetic Aperture Radar (SAR) system for high-resolution wide-swath imaging based on Scan-on-Receive (SCORE) algorithm for receive beam steering. SCORE algorithm works under model mismatch conditions in presence of topographic height. A study on the potentiality of an adaptive approach for receive beam steering based on spatial spectral estimation is presented. The impact of topographic height on SCORE performance in different operational scenarios is examined, with reference to a realistic SAR system. The SCORE performance is compared to that of the adaptive approach by using the Cramèr Rao lower bound analysis

    Monolithic SAW convolvers using chirp transducers

    Get PDF

    Ultra-short pulse compression using photonic crystal fibre

    Get PDF
    A short section of photonic crystal fibre has been used for ultra-short pulse compression. The unique optical properties of this novel medium in terms of high non-linearity and relatively small group velocity dispersion are shown to provide an ideal platform for the standard fibre pulse compression technique used directly on the nano-Joule output pulses from a commercial laser system. We report an order of magnitude reduction of the pulse width to 25 fs FWHM but predict a substantially improved performance with a dedicated fibre design. Good agreement is obtained with a simple model for the spectral broadening in the fibre

    Separation between coherent and turbulent fluctuations. What can we learn from the Empirical Mode Decomposition?

    Full text link
    The performances of a new data processing technique, namely the Empirical Mode Decomposition, are evaluated on a fully developed turbulent velocity signal perturbed by a numerical forcing which mimics a long-period flapping. First, we introduce a "resemblance" criterion to discriminate between the polluted and the unpolluted modes extracted from the perturbed velocity signal by means of the Empirical Mode Decomposition algorithm. A rejection procedure, playing, somehow, the role of a high-pass filter, is then designed in order to infer the original velocity signal from the perturbed one. The quality of this recovering procedure is extensively evaluated in the case of a "mono-component" perturbation (sine wave) by varying both the amplitude and the frequency of the perturbation. An excellent agreement between the recovered and the reference velocity signals is found, even though some discrepancies are observed when the perturbation frequency overlaps the frequency range corresponding to the energy-containing eddies as emphasized by both the energy spectrum and the structure functions. Finally, our recovering procedure is successfully performed on a time-dependent perturbation (linear chirp) covering a broad range of frequencies.Comment: 23 pages, 13 figures, submitted to Experiments in Fluid

    Iterative Time-Varying Filter Algorithm Based on Discrete Linear Chirp Transform

    Full text link
    Denoising of broadband non--stationary signals is a challenging problem in communication systems. In this paper, we introduce a time-varying filter algorithm based on the discrete linear chirp transform (DLCT), which provides local signal decomposition in terms of linear chirps. The method relies on the ability of the DLCT for providing a sparse representation to a wide class of broadband signals. The performance of the proposed algorithm is compared with the discrete fractional Fourier transform (DFrFT) filtering algorithm. Simulation results show that the DLCT algorithm provides better performance than the DFrFT algorithm and consequently achieves high quality filtering.Comment: 6 pages, conference pape
    • …
    corecore