86,193 research outputs found

    Get yourself connected: conceptualising the role of digital technologies in Norwegian career guidance

    Get PDF
    This report outlines the role of digital technologies in the provision of career guidance. It was commissioned by the c ommittee on career guidance which is advising the Norwegian Government following a review of the countries skills system by the OECD. In this report we argue that career guidance and online career guidance in particular can support the development of Norwa y’s skills system to help meet the economic challenges that it faces.The expert committee advising Norway’s Career Guidance Initiativ

    Technology to support young people 16 to 18 years of age who are not in employment, education or training (NEET): a local authority landscape review - final report

    Get PDF
    Becta landscape review: Technologies used by local authorities to support young people who are not in education, employment or trainin

    CommuniSense: Crowdsourcing Road Hazards in Nairobi

    Get PDF
    Nairobi is one of the fastest growing metropolitan cities and a major business and technology powerhouse in Africa. However, Nairobi currently lacks monitoring technologies to obtain reliable data on traffic and road infrastructure conditions. In this paper, we investigate the use of mobile crowdsourcing as means to gather and document Nairobi's road quality information. We first present the key findings of a city-wide road quality survey about the perception of existing road quality conditions in Nairobi. Based on the survey's findings, we then developed a mobile crowdsourcing application, called CommuniSense, to collect road quality data. The application serves as a tool for users to locate, describe, and photograph road hazards. We tested our application through a two-week field study amongst 30 participants to document various forms of road hazards from different areas in Nairobi. To verify the authenticity of user-contributed reports from our field study, we proposed to use online crowdsourcing using Amazon's Mechanical Turk (MTurk) to verify whether submitted reports indeed depict road hazards. We found 92% of user-submitted reports to match the MTurkers judgements. While our prototype was designed and tested on a specific city, our methodology is applicable to other developing cities.Comment: In Proceedings of 17th International Conference on Human-Computer Interaction with Mobile Devices and Services (MobileHCI 2015

    Kompics: a message-passing component model for building distributed systems

    Get PDF
    The Kompics component model and programming framework was designedto simplify the development of increasingly complex distributed systems. Systems built with Kompics leverage multi-core machines out of the box and they can be dynamically reconfigured to support hot software upgrades. A simulation framework enables deterministic debugging and reproducible performance evaluation of unmodified Kompics distributed systems. We describe the component model and show how to program and compose event-based distributed systems. We present the architectural patterns and abstractions that Kompics facilitates and we highlight a case study of a complex distributed middleware that we have built with Kompics. We show how our approach enables systematic development and evaluation of large-scale and dynamic distributed systems

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Location Privacy in Spatial Crowdsourcing

    Full text link
    Spatial crowdsourcing (SC) is a new platform that engages individuals in collecting and analyzing environmental, social and other spatiotemporal information. With SC, requesters outsource their spatiotemporal tasks to a set of workers, who will perform the tasks by physically traveling to the tasks' locations. This chapter identifies privacy threats toward both workers and requesters during the two main phases of spatial crowdsourcing, tasking and reporting. Tasking is the process of identifying which tasks should be assigned to which workers. This process is handled by a spatial crowdsourcing server (SC-server). The latter phase is reporting, in which workers travel to the tasks' locations, complete the tasks and upload their reports to the SC-server. The challenge is to enable effective and efficient tasking as well as reporting in SC without disclosing the actual locations of workers (at least until they agree to perform a task) and the tasks themselves (at least to workers who are not assigned to those tasks). This chapter aims to provide an overview of the state-of-the-art in protecting users' location privacy in spatial crowdsourcing. We provide a comparative study of a diverse set of solutions in terms of task publishing modes (push vs. pull), problem focuses (tasking and reporting), threats (server, requester and worker), and underlying technical approaches (from pseudonymity, cloaking, and perturbation to exchange-based and encryption-based techniques). The strengths and drawbacks of the techniques are highlighted, leading to a discussion of open problems and future work
    corecore