27,679 research outputs found

    Photoionization of few electron systems with a hybrid Coupled Channels approach

    Get PDF
    We present the hybrid anti-symmetrized coupled channels method for the calculation of fully differential photo-electron spectra of multi-electron atoms and small molecules interacting with strong laser fields. The method unites quantum chemical few-body electronic structure with strong-field dynamics by solving the time dependent Schr\"odinger equation in a fully anti-symmetrized basis composed of multi-electron states from quantum chemistry and a one-electron numerical basis. Photoelectron spectra are obtained via the time dependent surface flux (tSURFF) method. Performance and accuracy of the approach are demonstrated for spectra from the helium and berryllium atoms and the hydrogen molecule in linearly polarized laser fields at wavelength from 21 nm to 400 nm. At long wavelengths, helium and the hydrogen molecule at equilibrium inter-nuclear distance can be approximated as single channel systems whereas beryllium needs a multi-channel description

    Effective Field Theory for Few-Nucleon Systems

    Full text link
    We review the effective field theories (EFTs) developed for few-nucleon systems. These EFTs are controlled expansions in momenta, where certain (leading-order) interactions are summed to all orders. At low energies, an EFT with only contact interactions allows a detailed analysis of renormalization in a non-perturbative context and uncovers novel asymptotic behavior. Manifestly model-independent calculations can be carried out to high orders, leading to high precision. At higher energies, an EFT that includes pion fields justifies and extends the traditional framework of phenomenological potentials. The correct treatment of QCD symmetries ensures a connection with lattice QCD. Several tests and prospects of these EFTs are discussed.Comment: 55 pages, 18 figures, to appear in Ann. Rev. Nucl. Part. Sci. 52 (2002

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    The physics of streamer discharge phenomena

    Get PDF
    In this review we describe a transient type of gas discharge which is commonly called a streamer discharge, as well as a few related phenomena in pulsed discharges. Streamers are propagating ionization fronts with self-organized field enhancement at their tips that can appear in gases at (or close to) atmospheric pressure. They are the precursors of other discharges like sparks and lightning, but they also occur in for example corona reactors or plasma jets which are used for a variety of plasma chemical purposes. When enough space is available, streamers can also form at much lower pressures, like in the case of sprite discharges high up in the atmosphere. We explain the structure and basic underlying physics of streamer discharges, and how they scale with gas density. We discuss the chemistry and applications of streamers, and describe their two main stages in detail: inception and propagation. We also look at some other topics, like interaction with flow and heat, related pulsed discharges, and electron runaway and high energy radiation. Finally, we discuss streamer simulations and diagnostics in quite some detail. This review is written with two purposes in mind: First, we describe recent results on the physics of streamer discharges, with a focus on the work performed in our groups. We also describe recent developments in diagnostics and simulations of streamers. Second, we provide background information on the above-mentioned aspects of streamers. This review can therefore be used as a tutorial by researchers starting to work in the field of streamer physics.Comment: 89 pages, 29 figure

    Hydrodynamics of Suspensions of Passive and Active Rigid Particles: A Rigid Multiblob Approach

    Get PDF
    We develop a rigid multiblob method for numerically solving the mobility problem for suspensions of passive and active rigid particles of complex shape in Stokes flow in unconfined, partially confined, and fully confined geometries. As in a number of existing methods, we discretize rigid bodies using a collection of minimally-resolved spherical blobs constrained to move as a rigid body, to arrive at a potentially large linear system of equations for the unknown Lagrange multipliers and rigid-body motions. Here we develop a block-diagonal preconditioner for this linear system and show that a standard Krylov solver converges in a modest number of iterations that is essentially independent of the number of particles. For unbounded suspensions and suspensions sedimented against a single no-slip boundary, we rely on existing analytical expressions for the Rotne-Prager tensor combined with a fast multipole method or a direct summation on a Graphical Processing Unit to obtain an simple yet efficient and scalable implementation. For fully confined domains, such as periodic suspensions or suspensions confined in slit and square channels, we extend a recently-developed rigid-body immersed boundary method to suspensions of freely-moving passive or active rigid particles at zero Reynolds number. We demonstrate that the iterative solver for the coupled fluid and rigid body equations converges in a bounded number of iterations regardless of the system size. We optimize a number of parameters in the iterative solvers and apply our method to a variety of benchmark problems to carefully assess the accuracy of the rigid multiblob approach as a function of the resolution. We also model the dynamics of colloidal particles studied in recent experiments, such as passive boomerangs in a slit channel, as well as a pair of non-Brownian active nanorods sedimented against a wall.Comment: Under revision in CAMCOS, Nov 201
    • …
    corecore