8,204 research outputs found

    Multi-User Multi-Carrier Differential Chaos Shift Keying Communication System

    Full text link
    In this paper, a multi user Multi-Carrier Differential Chaos Shift Keying (MC-DCSK) modulation is presented. The system endeavors to provide a good trade-off between robustness, energy efficiency and high data rate, while still being simple. In this architecture of MC-DCSK system, for each user, chaotic reference sequence is transmitted over a predefined subcarrier frequency. Multiple modulated data streams are transmitted over the remaining subcarriers allocated for each user. This transmitter structure saves energy and increases the spectral efficiency of the conventional DCSK system.Comment: Accepted in the IEEE International Wireless Communications and Mobile Computing Conference (IWCMC 2013

    Single-RF spatial modulation requires single-carrier transmission: frequency-domain turbo equalization for dispersive channels

    No full text
    In this paper, we propose a broadband single-carrier (SC) spatial-modulation (SM) based multiple-input multipleoutput (MIMO) architecture relying on a soft-decision (SoD) frequency-domain equalization (FDE) receiver. We demonstrate that conventional orthogonal frequency-division multiplexing (OFDM)-based broadband transmissions are not readily suitable for the single–radio frequency (RF) assisted SM-MIMO schemes, since this scheme does not exhibit any substantial performance advantage over single-antenna transmissions. To circumvent this limitation, a low-complexity soft-decision (SoD) FDE algorithm based on the minimum mean-square error (MMSE) criterion is invoked for our broadband SC-based SM-MIMO scheme, which is capable of operating in a strongly dispersive channel having a long channel impulse response (CIR) at a moderate decoding complexity. Furthermore, our SoD FDE attains a near-capacity performance with the aid of a three-stage concatenated SC-based SM architecture

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    MC-CDMA aided multi-user space-time shift keying in wideband channels

    No full text
    In this paper, we propose multi-carrier code division multiple access (MC-CDMA)-aided space-time shift keying (STSK) for mitigating the performance erosion of the classic STSK scheme in dispersive channels, while supporting multiple users. The codewords generated by the STSK scheme are appropriately spread in frequency-domain (FD) and transmitted over a number of parallel frequency-?at subchannels. We propose a new receiver architecture amalgamating the single-stream maximum-likelihood (ML) detector of the STSK system and the multiuser detector (MUD) of the MC-CDMA system. The performance of the proposed scheme is evaluated for transmission over frequency-selective channels in both uncoded and channel-coded scenarios. The results of our simulations demonstrate that the proposed scheme overcomes the channel impairments imposed by wideband channels and exhibits near-capacity performance in a channel-coded scenario

    Method and apparatus for quadriphase-shift-key and linear phase modulation

    Get PDF
    A submultiple of an S-band transmitter output frequency was divided equally between a linear phase modulation branch and a QPSK modulation branch. The linear modulation branch includes a multiplier to increase the carrier frequency to a level which, when combined with the carrier in the QPSK branch in an up-converter (utilizing a mixer at the input followed by a bandpass filter), produces the transmitter output frequency. This allows the QPSK modulator to operate at one-eighth of the output frequency where repeatable and precisely controlled modulation can be easily achieved. This also allows linear phase modulation at one-eighth the output frequency where low modulator deviation and good linearity can be easily maintained
    • …
    corecore