944 research outputs found

    Advances in Monocular Exemplar-based Human Body Pose Analysis: Modeling, Detection and Tracking

    Get PDF
    Esta tesis contribuye en el análisis de la postura del cuerpo humano a partir de secuencias de imágenes adquiridas con una sola cámara. Esta temática presenta un amplio rango de potenciales aplicaciones en video-vigilancia, video-juegos o aplicaciones biomédicas. Las técnicas basadas en patrones han tenido éxito, sin embargo, su precisión depende de la similitud del punto de vista de la cámara y de las propiedades de la escena entre las imágenes de entrenamiento y las de prueba. Teniendo en cuenta un conjunto de datos de entrenamiento capturado mediante un número reducido de cámaras fijas, paralelas al suelo, se han identificado y analizado tres escenarios posibles con creciente nivel de dificultad: 1) una cámara estática paralela al suelo, 2) una cámara de vigilancia fija con un ángulo de visión considerablemente diferente, y 3) una secuencia de video capturada con una cámara en movimiento o simplemente una sola imagen estática

    Fine-Grained Head Pose Estimation Without Keypoints

    Full text link
    Estimating the head pose of a person is a crucial problem that has a large amount of applications such as aiding in gaze estimation, modeling attention, fitting 3D models to video and performing face alignment. Traditionally head pose is computed by estimating some keypoints from the target face and solving the 2D to 3D correspondence problem with a mean human head model. We argue that this is a fragile method because it relies entirely on landmark detection performance, the extraneous head model and an ad-hoc fitting step. We present an elegant and robust way to determine pose by training a multi-loss convolutional neural network on 300W-LP, a large synthetically expanded dataset, to predict intrinsic Euler angles (yaw, pitch and roll) directly from image intensities through joint binned pose classification and regression. We present empirical tests on common in-the-wild pose benchmark datasets which show state-of-the-art results. Additionally we test our method on a dataset usually used for pose estimation using depth and start to close the gap with state-of-the-art depth pose methods. We open-source our training and testing code as well as release our pre-trained models.Comment: Accepted to Computer Vision and Pattern Recognition Workshops (CVPRW), 2018 IEEE Conference on. IEEE, 201

    Human shape modelling for carried object detection and segmentation

    Get PDF
    La détection des objets transportés est un des prérequis pour développer des systèmes qui cherchent à comprendre les activités impliquant des personnes et des objets. Cette thèse présente de nouvelles méthodes pour détecter et segmenter les objets transportés dans des vidéos de surveillance. Les contributions sont divisées en trois principaux chapitres. Dans le premier chapitre, nous introduisons notre détecteur d’objets transportés, qui nous permet de détecter un type générique d’objets. Nous formulons la détection d’objets transportés comme un problème de classification de contours. Nous classifions le contour des objets mobiles en deux classes : objets transportés et personnes. Un masque de probabilités est généré pour le contour d’une personne basé sur un ensemble d’exemplaires (ECE) de personnes qui marchent ou se tiennent debout de différents points de vue. Les contours qui ne correspondent pas au masque de probabilités généré sont considérés comme des candidats pour être des objets transportés. Ensuite, une région est assignée à chaque objet transporté en utilisant la Coupe Biaisée Normalisée (BNC) avec une probabilité obtenue par une fonction pondérée de son chevauchement avec l’hypothèse du masque de contours de la personne et du premier plan segmenté. Finalement, les objets transportés sont détectés en appliquant une Suppression des Non-Maxima (NMS) qui élimine les scores trop bas pour les objets candidats. Le deuxième chapitre de contribution présente une approche pour détecter des objets transportés avec une méthode innovatrice pour extraire des caractéristiques des régions d’avant-plan basée sur leurs contours locaux et l’information des super-pixels. Initiallement, un objet bougeant dans une séquence vidéo est segmente en super-pixels sous plusieurs échelles. Ensuite, les régions ressemblant à des personnes dans l’avant-plan sont identifiées en utilisant un ensemble de caractéristiques extraites de super-pixels dans un codebook de formes locales. Ici, les régions ressemblant à des humains sont équivalentes au masque de probabilités de la première méthode (ECE). Notre deuxième détecteur d’objets transportés bénéficie du nouveau descripteur de caractéristiques pour produire une carte de probabilité plus précise. Les compléments des super-pixels correspondants aux régions ressemblant à des personnes dans l’avant-plan sont considérés comme une carte de probabilité des objets transportés. Finalement, chaque groupe de super-pixels voisins avec une haute probabilité d’objets transportés et qui ont un fort support de bordure sont fusionnés pour former un objet transporté. Finalement, dans le troisième chapitre, nous présentons une méthode pour détecter et segmenter les objets transportés. La méthode proposée adopte le nouveau descripteur basé sur les super-pixels pour iii identifier les régions ressemblant à des objets transportés en utilisant la modélisation de la forme humaine. En utilisant l’information spatio-temporelle des régions candidates, la consistance des objets transportés récurrents, vus dans le temps, est obtenue et sert à détecter les objets transportés. Enfin, les régions d’objets transportés sont raffinées en intégrant de l’information sur leur apparence et leur position à travers le temps avec une extension spatio-temporelle de GrabCut. Cette étape finale sert à segmenter avec précision les objets transportés dans les séquences vidéo. Nos méthodes sont complètement automatiques, et font des suppositions minimales sur les personnes, les objets transportés, et les les séquences vidéo. Nous évaluons les méthodes décrites en utilisant deux ensembles de données, PETS 2006 et i-Lids AVSS. Nous évaluons notre détecteur et nos méthodes de segmentation en les comparant avec l’état de l’art. L’évaluation expérimentale sur les deux ensembles de données démontre que notre détecteur d’objets transportés et nos méthodes de segmentation surpassent de façon significative les algorithmes compétiteurs.Detecting carried objects is one of the requirements for developing systems that reason about activities involving people and objects. This thesis presents novel methods to detect and segment carried objects in surveillance videos. The contributions are divided into three main chapters. In the first, we introduce our carried object detector which allows to detect a generic class of objects. We formulate carried object detection in terms of a contour classification problem. We classify moving object contours into two classes: carried object and person. A probability mask for person’s contours is generated based on an ensemble of contour exemplars (ECE) of walking/standing humans in different viewing directions. Contours that are not falling in the generated hypothesis mask are considered as candidates for carried object contours. Then, a region is assigned to each carried object candidate contour using Biased Normalized Cut (BNC) with a probability obtained by a weighted function of its overlap with the person’s contour hypothesis mask and segmented foreground. Finally, carried objects are detected by applying a Non-Maximum Suppression (NMS) method which eliminates the low score carried object candidates. The second contribution presents an approach to detect carried objects with an innovative method for extracting features from foreground regions based on their local contours and superpixel information. Initially, a moving object in a video frame is segmented into multi-scale superpixels. Then human-like regions in the foreground area are identified by matching a set of extracted features from superpixels against a codebook of local shapes. Here the definition of human like regions is equivalent to a person’s probability map in our first proposed method (ECE). Our second carried object detector benefits from the novel feature descriptor to produce a more accurate probability map. Complement of the matching probabilities of superpixels to human-like regions in the foreground are considered as a carried object probability map. At the end, each group of neighboring superpixels with a high carried object probability which has strong edge support is merged to form a carried object. Finally, in the third contribution we present a method to detect and segment carried objects. The proposed method adopts the new superpixel-based descriptor to identify carried object-like candidate regions using human shape modeling. Using spatio-temporal information of the candidate regions, consistency of recurring carried object candidates viewed over time is obtained and serves to detect carried objects. Last, the detected carried object regions are refined by integrating information of their appearances and their locations over time with a spatio-temporal extension of GrabCut. This final stage is used to accurately segment carried objects in frames. Our methods are fully automatic, and make minimal assumptions about a person, carried objects and videos. We evaluate the aforementioned methods using two available datasets PETS 2006 and i-Lids AVSS. We compare our detector and segmentation methods against a state-of-the-art detector. Experimental evaluation on the two datasets demonstrates that both our carried object detection and segmentation methods significantly outperform competing algorithms

    Domain-Specific Face Synthesis for Video Face Recognition from a Single Sample Per Person

    Full text link
    The performance of still-to-video FR systems can decline significantly because faces captured in unconstrained operational domain (OD) over multiple video cameras have a different underlying data distribution compared to faces captured under controlled conditions in the enrollment domain (ED) with a still camera. This is particularly true when individuals are enrolled to the system using a single reference still. To improve the robustness of these systems, it is possible to augment the reference set by generating synthetic faces based on the original still. However, without knowledge of the OD, many synthetic images must be generated to account for all possible capture conditions. FR systems may, therefore, require complex implementations and yield lower accuracy when training on many less relevant images. This paper introduces an algorithm for domain-specific face synthesis (DSFS) that exploits the representative intra-class variation information available from the OD. Prior to operation, a compact set of faces from unknown persons appearing in the OD is selected through clustering in the captured condition space. The domain-specific variations of these face images are projected onto the reference stills by integrating an image-based face relighting technique inside the 3D reconstruction framework. A compact set of synthetic faces is generated that resemble individuals of interest under the capture conditions relevant to the OD. In a particular implementation based on sparse representation classification, the synthetic faces generated with the DSFS are employed to form a cross-domain dictionary that account for structured sparsity. Experimental results reveal that augmenting the reference gallery set of FR systems using the proposed DSFS approach can provide a higher level of accuracy compared to state-of-the-art approaches, with only a moderate increase in its computational complexity

    Articulated Clinician Detection Using 3D Pictorial Structures on RGB-D Data

    Full text link
    Reliable human pose estimation (HPE) is essential to many clinical applications, such as surgical workflow analysis, radiation safety monitoring and human-robot cooperation. Proposed methods for the operating room (OR) rely either on foreground estimation using a multi-camera system, which is a challenge in real ORs due to color similarities and frequent illumination changes, or on wearable sensors or markers, which are invasive and therefore difficult to introduce in the room. Instead, we propose a novel approach based on Pictorial Structures (PS) and on RGB-D data, which can be easily deployed in real ORs. We extend the PS framework in two ways. First, we build robust and discriminative part detectors using both color and depth images. We also present a novel descriptor for depth images, called histogram of depth differences (HDD). Second, we extend PS to 3D by proposing 3D pairwise constraints and a new method that makes exact inference tractable. Our approach is evaluated for pose estimation and clinician detection on a challenging RGB-D dataset recorded in a busy operating room during live surgeries. We conduct series of experiments to study the different part detectors in conjunction with the various 2D or 3D pairwise constraints. Our comparisons demonstrate that 3D PS with RGB-D part detectors significantly improves the results in a visually challenging operating environment.Comment: The supplementary video is available at https://youtu.be/iabbGSqRSg
    • …
    corecore