236,388 research outputs found

    Multilingual NMT with a language-independent attention bridge

    Full text link
    In this paper, we propose a multilingual encoder-decoder architecture capable of obtaining multilingual sentence representations by means of incorporating an intermediate {\em attention bridge} that is shared across all languages. That is, we train the model with language-specific encoders and decoders that are connected via self-attention with a shared layer that we call attention bridge. This layer exploits the semantics from each language for performing translation and develops into a language-independent meaning representation that can efficiently be used for transfer learning. We present a new framework for the efficient development of multilingual NMT using this model and scheduled training. We have tested the approach in a systematic way with a multi-parallel data set. We show that the model achieves substantial improvements over strong bilingual models and that it also works well for zero-shot translation, which demonstrates its ability of abstraction and transfer learning

    Learning across communities of practice: how postgraduate students cope with returning to higher education in an international setting

    Get PDF
    This paper is an exploratory case study into the way postgraduate students cope with the transition from the workplace to university in an international environment. It looks at how students move successfully between these two communities of practice, and the kind of learning that is involved in this process. As well as personal motivation, key factors found in boundary-crossing between the communities are multi-membership of communities and the use of identity as a bridge. Learning is found to involve a collateral transfer, or reconstruction, of knowledge in both directions. The study is intended to inform the development of a learning support program to help postgraduate students improve their learning process

    You Only Transfer What You Share: Intersection-Induced Graph Transfer Learning for Link Prediction

    Full text link
    Link prediction is central to many real-world applications, but its performance may be hampered when the graph of interest is sparse. To alleviate issues caused by sparsity, we investigate a previously overlooked phenomenon: in many cases, a densely connected, complementary graph can be found for the original graph. The denser graph may share nodes with the original graph, which offers a natural bridge for transferring selective, meaningful knowledge. We identify this setting as Graph Intersection-induced Transfer Learning (GITL), which is motivated by practical applications in e-commerce or academic co-authorship predictions. We develop a framework to effectively leverage the structural prior in this setting. We first create an intersection subgraph using the shared nodes between the two graphs, then transfer knowledge from the source-enriched intersection subgraph to the full target graph. In the second step, we consider two approaches: a modified label propagation, and a multi-layer perceptron (MLP) model in a teacher-student regime. Experimental results on proprietary e-commerce datasets and open-source citation graphs show that the proposed workflow outperforms existing transfer learning baselines that do not explicitly utilize the intersection structure.Comment: Accepted in TMLR (https://openreview.net/forum?id=Nn71AdKyYH

    Blending-target Domain Adaptation by Adversarial Meta-Adaptation Networks

    Full text link
    (Unsupervised) Domain Adaptation (DA) seeks for classifying target instances when solely provided with source labeled and target unlabeled examples for training. Learning domain-invariant features helps to achieve this goal, whereas it underpins unlabeled samples drawn from a single or multiple explicit target domains (Multi-target DA). In this paper, we consider a more realistic transfer scenario: our target domain is comprised of multiple sub-targets implicitly blended with each other, so that learners could not identify which sub-target each unlabeled sample belongs to. This Blending-target Domain Adaptation (BTDA) scenario commonly appears in practice and threatens the validities of most existing DA algorithms, due to the presence of domain gaps and categorical misalignments among these hidden sub-targets. To reap the transfer performance gains in this new scenario, we propose Adversarial Meta-Adaptation Network (AMEAN). AMEAN entails two adversarial transfer learning processes. The first is a conventional adversarial transfer to bridge our source and mixed target domains. To circumvent the intra-target category misalignment, the second process presents as ``learning to adapt'': It deploys an unsupervised meta-learner receiving target data and their ongoing feature-learning feedbacks, to discover target clusters as our ``meta-sub-target'' domains. These meta-sub-targets auto-design our meta-sub-target DA loss, which empirically eliminates the implicit category mismatching in our mixed target. We evaluate AMEAN and a variety of DA algorithms in three benchmarks under the BTDA setup. Empirical results show that BTDA is a quite challenging transfer setup for most existing DA algorithms, yet AMEAN significantly outperforms these state-of-the-art baselines and effectively restrains the negative transfer effects in BTDA.Comment: CVPR-19 (oral). Code is available at http://github.com/zjy526223908/BTD
    • …
    corecore