1,105 research outputs found

    MIT Space Engineering Research Center

    Get PDF
    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report

    Two-phase incremental kernel PCA for learning massive or online datasets

    Get PDF
    As a powerful nonlinear feature extractor, kernel principal component analysis (KPCA) has been widely adopted in many machine learning applications. However, KPCA is usually performed in a batch mode, leading to some potential problems when handling massive or online datasets. To overcome this drawback of KPCA, in this paper, we propose a two-phase incremental KPCA (TP-IKPCA) algorithm which can incorporate data into KPCA in an incremental fashion. In the first phase, an incremental algorithm is developed to explicitly express the data in the kernel space. In the second phase, we extend an incremental principal component analysis (IPCA) to estimate the kernel principal components. Extensive experimental results on both synthesized and real datasets showed that the proposed TP-IKPCA produces similar principal components as conventional batch-based KPCA but is computationally faster than KPCA and its several incremental variants. Therefore, our algorithm can be applied to massive or online datasets where the batch method is not available

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Proceedings of the Workshop on Applications of Distributed System Theory to the Control of Large Space Structures

    Get PDF
    Two general themes in the control of large space structures are addressed: control theory for distributed parameter systems and distributed control for systems requiring spatially-distributed multipoint sensing and actuation. Topics include modeling and control, stabilization, and estimation and identification

    Variational Methods in Shape Space

    Get PDF
    This dissertation deals with the application of variational methods in spaces of geometric shapes. In particular, the treated topics include shape averaging, principal component analysis in shape space, computation of geodesic paths in shape space, as well as shape optimisation. Chapter 1 provides a brief overview over the employed models of shape space. Geometric shapes are identified with two- or three-dimensional, deformable objects. Deformations will be described via physical models; in particular, the objects will be interpreted as consisting of either a hyperelastic solid or a viscous liquid material. Furthermore, the description of shapes via phase fields or level sets is briefly introduced. Chapter 2 reviews different and related approaches to shape space modelling. References to related topics in image segmentation and registration are also provided. Finally, the relevant shape optimisation literature is introduced. Chapter 3 recapitulates the employed concepts from continuum mechanics and phase field modelling and states basic theoretical results needed for the later analysis. Chapter 4 addresses the computation of shape averages, based on a hyperelastic notion of shape dissimilarity: The dissimilarity between two shapes is measured as the minimum deformation energy required to deform the first into the second shape. A corresponding phase-field model is introduced, analysed, and finally implemented numerically via finite elements. A principal component analysis of shapes, which is consistent with the previously introduced average, is considered in Chapter 5. Elastic boundary stresses on the average shape are used as representatives of the input shapes in a linear vector space. On these linear representatives, a standard principal component analysis can be performed, where the employed covariance metric should be properly chosen to depend on the input shapes. Chapter 6 interprets shapes as belonging to objects made of a viscous liquid and correspondingly defines geodesic paths between shapes. The energy of a path is given as the total physical dissipation during the deformation of an object along the path. A rigid body motion invariant time discretisation is achieved by approximating the dissipation along a path segment by the deformation energy of a small solid deformation. The numerical implementation is based on level sets. Chapter 7 is concerned with the optimisation of the geometry and topology of solid structures that are subject to a mechanical load. Given the load configuration, the structure rigidity, its volume, and its surface area shall be optimally balanced. A phase field model is devised and analysed for this purpose. In this context, the use of nonlinear elasticity allows to detect buckling phenomena which would be ignored in linearised elasticity

    Visualisation of Articular Cartilage Microstructure

    Get PDF
    This thesis developed image processing techniques enabling the detection and segregation of biological three dimensional images into its component features based upon shape and relative size of the features detected. The work used articular cartilage images and separated fibrous components from the cells and background noise. Measurement of individual components and their recombination into a composite image are possible. Developed software was used to analyse the development of hyaline cartilage in developing sheep embryos
    corecore