9,681 research outputs found

    Simple Multi-Authority Attribute-Based Encryption for Short Messages

    Get PDF
    Central authority free multi-authority attribute based encryption scheme for short messages will be presented. Several multi-authority attribute based encryption schemes were recently proposed. We can divide these schemes into two groups, one of them are the ciphertext-policy attribute based encryption schemes (CP-ABE), the another one are the key-policy attribute based encryption schemes (KP-ABE). In our new multi-authority attribute based encryption scheme we combine them: the access structure will be given by authorities and the encryptor in conjunction. The authorities will be able to decide who is able to decrypt a ciphertext under their names, but the encryptor will choose the authorities whom he would involve in the encryption. In addition, our scheme is free of any central authority. The security of our new scheme relies on the decisional 3-party Diffie-Hellman assumption

    Multiple Authorities Access under Public Cloud Storage

    Get PDF
    Public cloud storage is a cloud storage model that provide services to individuals and organizations to store, edit and manage data. Public cloud storage service is also known as storage service, utility storage and online storage. Cloud storage has many advantages, there is still remain various challenges among which privacy and security of users data have major problem in public cloud storage. Attribute Based Encryption(ABE) is a cryptographic technique which provides data owner direct control over their data in public cloud storage. In the traditional ABE scheme involve only single authority to maintain attribute set which can bring a single-point bottleneck on both security and performance. Now we use threshold multi-authority Cipher Text-Policy Attribute-Based Encryption (CP-ABE) access control scheme, name TMACS. TMACS is Threshold Multi-Authority Access Control System. In TMACS,multiple authority jointly manages the whole attribute set but no one has full control of any specific attribute. By combining threshold secret sharing (t,n) and multi-authority CP-ABE scheme, we developed efficient multi-authority access control system in public cloud storage

    Multiple Authorities Access under Public Cloud Storage

    Get PDF
    Public cloud storage is a cloud storage model that provide services to individuals and organizations to store, edit and manage data. Public cloud storage service is also known as storage service, utility storage and online storage. Cloud storage has many advantages, there is still remain various challenges among which privacy and security of users data have major issues in public cloud storage. Attribute Based Encryption(ABE) is a cryptographic technique which provides data owner direct control over their data in public cloud storage. In the traditional ABE scheme involve single authority to maintain attribute set which can bring a single-point bottleneck on both security and performance. Now we use threshold multi-authority Cipher text-Policy Attribute-Based Encryption (CP-ABE) access control scheme, name TMACS. TMACS is Threshold Multi-Authority Access Control System. In TMACS,multiple authority jointly manages the whole attribute set but no one has full control of any specific attribute. By combining threshold secret sharing (t,n) and multi-authority CP-ABE scheme, we developed efficient multi-authority access control system in public cloud storage

    Multiple Authorities Access under Public Cloud Storage: Review

    Get PDF
    Public cloud storage is a cloud storage model that provide services to individuals and organizations to store, edit and manage data. Public cloud storage service is also known as storage service, utility storage and online storage. Cloud storage has many advantages, there is still remain various challenges among which privacy and security of users data have major issues in public cloud storage. Attribute Based Encryption(ABE) is a cryptographic technique which provides data owner direct control over their data in public cloud storage. In the traditional ABE scheme involve only one authority to maintain attribute set which can bring a single-point bottleneck on security and performance. Now we use threshold multi-authority Cipher text-Policy Attribute-Based Encryption (CP-ABE) access control scheme, name TMACS. TMACS is Threshold Multi-Authority Access Control System. In TMACS, multiple authority jointly manages the whole attribute set but no user has full control of any specific attribute. By combining threshold secret sharing (t,n) and multi-authority CP-ABE scheme, we developed efficient multi-authority access control system in public cloud storage

    Security and Privacy Attribute Based Data Sharing in Public Cloud Storage

    Get PDF
    Public cloud storage is a cloud storage model that give services to people and associations to store, alter and oversee data. Public cloud storage benefit is otherwise called storage benefit, utility storage and online storage. Cloud storage has numerous focal points, there is still stay different difficulties among which protection and security of clients data have significant issues in public cloud storage. Attribute Based Encryption (ABE) is a cryptographic system which gives data proprietor coordinate control over their data in public cloud storage. In the customary ABE conspire include single authority to keep up attribute set which can bring a solitary point bottleneck on both security and execution. Presently we utilize edge multi-authority Cipher content Policy Attribute-Based Encryption (CP-ABE) get to control plot, name TMACS. TMACS is Threshold Multi-Authority Access Control System. In TMACS, different authority mutually deals with the entire attribute set yet nobody has full control of a particular attribute. By joining limit secret sharing (t,n) and multi-authority CP-ABE conspire, we created dynamic multiauthority get to control framework in public cloud storage

    AnonyControl: Control Cloud Data Anonymously with Multi-Authority Attribute-Based Encryption

    Full text link
    Cloud computing is a revolutionary computing paradigm which enables flexible, on-demand and low-cost usage of computing resources. However, those advantages, ironically, are the causes of security and privacy problems, which emerge because the data owned by different users are stored in some cloud servers instead of under their own control. To deal with security problems, various schemes based on the Attribute- Based Encryption (ABE) have been proposed recently. However, the privacy problem of cloud computing is yet to be solved. This paper presents an anonymous privilege control scheme AnonyControl to address the user and data privacy problem in a cloud. By using multiple authorities in cloud computing system, our proposed scheme achieves anonymous cloud data access, finegrained privilege control, and more importantly, tolerance to up to (N -2) authority compromise. Our security and performance analysis show that AnonyControl is both secure and efficient for cloud computing environment.Comment: 9 pages, 6 figures, 3 tables, conference, IEEE INFOCOM 201

    Fully Adaptive Decentralized Multi-Authority ABE

    Get PDF
    Decentralized multi-authority attribute-based encryption (-) is a distributed generalization of standard (ciphertext-policy) attribute-based encryption where there is no trusted central authority: any party can become an authority and issue private keys, and there is no requirement for any global coordination other than the creation of an initial set of common reference parameters. We present the first multi-authority attribute-based encryption schemes that are provably fully adaptively secure. Namely, our construction is secure against an attacker that may corrupt some of the authorities as well as perform key queries adaptively throughout the life-time of the system. Our main construction relies on a prime order bilinear group where the -linear assumption holds as well as on a random oracle. Along the way, we present a conceptually simpler construction relying on a composite order bilinear group with standard subgroup decision assumptions as well as on a random oracle. Prior to this work, there was no construction that could resist adaptive corruptions of authorities, no matter the assumptions used. In fact, we point out that even standard complexity leveraging style arguments do not work in the multi-authority setting
    • …
    corecore