5,469 research outputs found

    Integrated Face Analytics Networks through Cross-Dataset Hybrid Training

    Full text link
    Face analytics benefits many multimedia applications. It consists of a number of tasks, such as facial emotion recognition and face parsing, and most existing approaches generally treat these tasks independently, which limits their deployment in real scenarios. In this paper we propose an integrated Face Analytics Network (iFAN), which is able to perform multiple tasks jointly for face analytics with a novel carefully designed network architecture to fully facilitate the informative interaction among different tasks. The proposed integrated network explicitly models the interactions between tasks so that the correlations between tasks can be fully exploited for performance boost. In addition, to solve the bottleneck of the absence of datasets with comprehensive training data for various tasks, we propose a novel cross-dataset hybrid training strategy. It allows "plug-in and play" of multiple datasets annotated for different tasks without the requirement of a fully labeled common dataset for all the tasks. We experimentally show that the proposed iFAN achieves state-of-the-art performance on multiple face analytics tasks using a single integrated model. Specifically, iFAN achieves an overall F-score of 91.15% on the Helen dataset for face parsing, a normalized mean error of 5.81% on the MTFL dataset for facial landmark localization and an accuracy of 45.73% on the BNU dataset for emotion recognition with a single model.Comment: 10 page

    Improving Landmark Localization with Semi-Supervised Learning

    Full text link
    We present two techniques to improve landmark localization in images from partially annotated datasets. Our primary goal is to leverage the common situation where precise landmark locations are only provided for a small data subset, but where class labels for classification or regression tasks related to the landmarks are more abundantly available. First, we propose the framework of sequential multitasking and explore it here through an architecture for landmark localization where training with class labels acts as an auxiliary signal to guide the landmark localization on unlabeled data. A key aspect of our approach is that errors can be backpropagated through a complete landmark localization model. Second, we propose and explore an unsupervised learning technique for landmark localization based on having a model predict equivariant landmarks with respect to transformations applied to the image. We show that these techniques, improve landmark prediction considerably and can learn effective detectors even when only a small fraction of the dataset has landmark labels. We present results on two toy datasets and four real datasets, with hands and faces, and report new state-of-the-art on two datasets in the wild, e.g. with only 5\% of labeled images we outperform previous state-of-the-art trained on the AFLW dataset.Comment: Published as a conference paper in CVPR 201

    Deep Learning Face Attributes in the Wild

    Full text link
    Predicting face attributes in the wild is challenging due to complex face variations. We propose a novel deep learning framework for attribute prediction in the wild. It cascades two CNNs, LNet and ANet, which are fine-tuned jointly with attribute tags, but pre-trained differently. LNet is pre-trained by massive general object categories for face localization, while ANet is pre-trained by massive face identities for attribute prediction. This framework not only outperforms the state-of-the-art with a large margin, but also reveals valuable facts on learning face representation. (1) It shows how the performances of face localization (LNet) and attribute prediction (ANet) can be improved by different pre-training strategies. (2) It reveals that although the filters of LNet are fine-tuned only with image-level attribute tags, their response maps over entire images have strong indication of face locations. This fact enables training LNet for face localization with only image-level annotations, but without face bounding boxes or landmarks, which are required by all attribute recognition works. (3) It also demonstrates that the high-level hidden neurons of ANet automatically discover semantic concepts after pre-training with massive face identities, and such concepts are significantly enriched after fine-tuning with attribute tags. Each attribute can be well explained with a sparse linear combination of these concepts.Comment: To appear in International Conference on Computer Vision (ICCV) 201

    From Facial Parts Responses to Face Detection: A Deep Learning Approach

    Full text link
    In this paper, we propose a novel deep convolutional network (DCN) that achieves outstanding performance on FDDB, PASCAL Face, and AFW. Specifically, our method achieves a high recall rate of 90.99% on the challenging FDDB benchmark, outperforming the state-of-the-art method by a large margin of 2.91%. Importantly, we consider finding faces from a new perspective through scoring facial parts responses by their spatial structure and arrangement. The scoring mechanism is carefully formulated considering challenging cases where faces are only partially visible. This consideration allows our network to detect faces under severe occlusion and unconstrained pose variation, which are the main difficulty and bottleneck of most existing face detection approaches. We show that despite the use of DCN, our network can achieve practical runtime speed.Comment: To appear in ICCV 201

    MOON: A Mixed Objective Optimization Network for the Recognition of Facial Attributes

    Full text link
    Attribute recognition, particularly facial, extracts many labels for each image. While some multi-task vision problems can be decomposed into separate tasks and stages, e.g., training independent models for each task, for a growing set of problems joint optimization across all tasks has been shown to improve performance. We show that for deep convolutional neural network (DCNN) facial attribute extraction, multi-task optimization is better. Unfortunately, it can be difficult to apply joint optimization to DCNNs when training data is imbalanced, and re-balancing multi-label data directly is structurally infeasible, since adding/removing data to balance one label will change the sampling of the other labels. This paper addresses the multi-label imbalance problem by introducing a novel mixed objective optimization network (MOON) with a loss function that mixes multiple task objectives with domain adaptive re-weighting of propagated loss. Experiments demonstrate that not only does MOON advance the state of the art in facial attribute recognition, but it also outperforms independently trained DCNNs using the same data. When using facial attributes for the LFW face recognition task, we show that our balanced (domain adapted) network outperforms the unbalanced trained network.Comment: Post-print of manuscript accepted to the European Conference on Computer Vision (ECCV) 2016 http://link.springer.com/chapter/10.1007%2F978-3-319-46454-1_
    • …
    corecore