53 research outputs found

    Intelligent algorithm for trapezoidal interval valued neutrosophic network analysis

    Get PDF
    The shortest path problem has been one of the most fundamental practical problems in network analysis. One of the good algorithms is Bellman-Ford, which has been applied in network, for the last some years. Due to complexity in the decision-making process, the decision makers face complications to express their view and judgment with an exact number for single valued membership degrees under neutrosophic environment. Though the interval number is a special situation of the neutrosophic, it did not solve the shortest path problems in an absolute manner. Hence, in this work, the authors have introduced the score function and accuracy function of trapezoidal interval valued neutrosophic numbers with their illustrative properties. These properties provide important theoretical base of the trapezoidal interval valued neutrosophic number. Also, they proposed an intelligent algorithm called trapezoidal interval valued neutrosophic version of Bellman’s algorithm to solve neutrosophic shortest path problem in network analysis. Further, comparative analysis has been made with the existing algorithm

    A multi-criteria decision-making method based on single-valued trapezoidal neutrosophic preference relations with complete weight information

    Get PDF
    Single-valued trapezoidal neutrosophic numbers (SVTNNs) have a strong capacity to depict uncertain, inconsistent, and incomplete information about decisionmaking problems. Preference relations represent a practical tool for presenting decision makers’ preference information regarding various alternatives

    New Trends in Neutrosophic Theory and Applications Volume II

    Get PDF
    Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory was proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs introducing neutrosophic sets and its applications, by many authors around the world. Also, an international journal - Neutrosophic Sets and Systems started its journey in 2013. Single valued neutrosophic sets have found their way into several hybrid systems, such as neutrosophic soft set, rough neutrosophic set, neutrosophic bipolar set, neutrosophic expert set, rough bipolar neutrosophic set, neutrosophic hesitant fuzzy set, etc. Successful applications of single valued neutrosophic sets have been developed in multiple criteria and multiple attribute decision making. This second volume collects original research and application papers from different perspectives covering different areas of neutrosophic studies, such as decision making, graph theory, image processing, probability theory, topology, and some theoretical papers. This volume contains four sections: DECISION MAKING, NEUTROSOPHIC GRAPH THEORY, IMAGE PROCESSING, ALGEBRA AND OTHER PAPERS. First paper (Pu Ji, Peng-fei Cheng, Hongyu Zhang, Jianqiang Wang. Interval valued neutrosophic Bonferroni mean operators and the application in the selection of renewable energy) aims to construct selection approaches for renewable energy considering the interrelationships among criteria. To do that, Bonferroni mean (BM) and geometric BM (GBM) are employed

    A linguistic Neutrosophic Multi-Criteria Group Decision-Making Method to University Human Resource Management

    Get PDF
    Competition among different universities depends largely on the competition for talent. Talent evaluation and selection is one of the main activities in human resource management (HRM) which is critical for university development. Firstly, linguistic neutrosophic sets (LNSs) are introduced to better express multiple uncertain information during the evaluation procedure. We further merge the power averaging operator with LNSs for information aggregation and propose a LN-power weighted averaging (LNPWA) operator and a LN-power weighted geometric (LNPWG) operator. Then, an extended technique for order preference by similarity to ideal solution (TOPSIS) method is developed to solve a case of university HRM evaluation problem. The main contribution and novelty of the proposed method rely on that it allows the information provided by different decision makers (DMs) to support and reinforce each other which is more consistent with the actual situation of university HRM evaluation. In addition, its effectiveness and advantages over existing methods are verified through sensitivity and comparative analysis. The results show that the proposal is capable in the domain of university HRM evaluation and may contribute to the talent introduction in universities

    Full Issue

    Get PDF

    Full Issue

    Get PDF
    • …
    corecore