6,736 research outputs found

    Numerical and experimental analysis on microbubble generation and multiphase mixing in novel microfluidic devices

    Get PDF
    In this study, a novel K-junction microfluidic junction and a conventional cross-junction were investigated numerically and experimentally for microbubble generation and multiple fluids mixing. In the K-junction, liquid solutions were injected into the junction via three liquid inlet channels, along with inert nitrogen gas supplied via the gas inlet channel, to periodically generate microbubbles in a controlled manner at the outlet channel. Numerical simulations based on Finite Volume method and Volume of Fluid (VOF) technique and experiments of both the K-junction and the cross-junction were conducted. The effect of parameters such as contact angle, surface tension, viscosity, gas pressure and gas-liquid flow ratios on the microbubble size distribution was investigated. The process of microbubble generation, obtained through high speed camera imaging and the numerical simulation, has shown good agreement in both junctions as well as the influence of viscosity and gas-liquid flow ratios for the K-junction and cross-junction. It was indicated that parameters like solution viscosities, gas-to-liquid flow ratios, gas inlet pressure, and their combination have a significant influence on the microbubble diameter, which was found to be in the range of 70-240 ”m when using micro capillaries of 100 ”m inner diameter. The multiple fluids mixing study was investigated by using two or three different polymer solutions for the cross-junction and the K-junction respectively in simulations and experiments. It can be seen that the mixing process obtained from simulations agrees well with experimental results and chaotic mixing was found in the mixing area of the K-junction, with higher mixing efficiency than the cross junction. Fluorescent images of microbubbles generated by using polymer solutions with dyes inside have shown the devices’ potential of encapsulating fluorescent dyes and polymers on the shell of bubbles and could be adopted as a method to encapsulate active pharmaceutical ingredients for potential applications in drug delivery

    Diffraction imaging of light induced dynamics in xenon-doped helium nanodroplets

    Get PDF
    We explore the light induced dynamics in superfluid helium nanodroplets with wide-angle scattering in a pump–probe measurement scheme. The droplets are doped with xenon atoms to facilitate the ignition of a nanoplasma through irradiation with near-infrared laser pulses. After a variable time delay of up to 800 ps, we image the subsequent dynamics using intense extreme ultraviolet pulses from the FERMI free-electron laser. The recorded scattering images exhibit complex intensity fluctuations that are categorized based on their characteristic features. Systematic simulations of wide-angle diffraction patterns are performed, which can qualitatively explain the observed features by employing model shapes with both randomly distributed as well as structured, symmetric distortions. This points to a connection between the dynamics and the positions of the dopants in the droplets. In particular, the structured fluctuations might be governed by an underlying array of quantized vortices in the superfluid droplet as has been observed in previous small-angle diffraction experiments. Our results provide a basis for further investigations of dopant–droplet interactions and associated heating mechanisms

    A method for three-dimensional particle sizing in two-phase flows

    Get PDF
    A method is devised for true three-dimensional (3D) particle sizing in two-phase systems. Based on a ray-optics approximation of the Mie scattering theory for spherical particles, and under given assumptions, the principle is applicable to intensity data from scatterers within arbitrary interrogation volumes. It requires knowledge of the particle 3D location and intensity, and of the spatial distribution of the incident light intensity throughout the measurement volume. The new methodology is particularly suited for Lagrangian measurements: we demonstrate its use with the defocusing digital particle image velocimetry technique, a 3D measurement technique that provides the location, intensity and velocity of particles in large volume domains. We provide a method to characterize the volumetric distribution of the incident illumination and we assess experimentally the size measurement uncertainty

    Physics of puffing and microexplosion of emulsion fuel droplets

    Get PDF
    The physics of water-in-oil emulsion droplet microexplosion/puffing has been investigated using high-fidelity interface-capturing simulation. Varying the dispersed-phase (water) sub-droplet size/location and the initiation location of explosive boiling (bubble formation), the droplet breakup processes have been well revealed. The bubble growth leads to local and partial breakup of the parent oil droplet, i.e., puffing. The water sub-droplet size and location determine the after-puffing dynamics. The boiling surface of the water sub-droplet is unstable and evolves further. Finally, the sub-droplet is wrapped by boiled water vapor and detaches itself from the parent oil droplet. When the water sub-droplet is small, the detachment is quick, and the oil droplet breakup is limited. When it is large and initially located toward the parent droplet center, the droplet breakup is more extensive. For microexplosion triggered by the simultaneous growth of multiple separate bubbles, each explosion is local and independent initially, but their mutual interactions occur at a later stage. The degree of breakup can be larger due to interactions among multiple explosions. These findings suggest that controlling microexplosion/puffing is possible in a fuel spray, if the emulsion-fuel blend and the ambient flow conditions such as heating are properly designed. The current study also gives us an insight into modeling the puffing and microexplosion of emulsion droplets and sprays.This article has been made available through the Brunel Open Access Publishing Fund

    Visualization in cryogenic environment: Application to two-phase studies

    Get PDF
    11 pagesInternational audienceThis paper reviews recent technical developments devoted to the study of cryogenic two-phase fluids. These techniques span from simple flow visualization to quantitative measurements of light scattering. It is shown that simple flow pattern configurations are obtained using classical optical tools (CCD cam- eras, endoscopes), even in most severe environments (high vacuum, high magnetic field). Quantitative measurements include laser velocimetry, particle sizing, and light scattering analysis. In the case of mag- netically compensated gravity boiling oxygen, optical access is used to control the poistioning of a bubble subject to buoyancy forces in an experimental cell. Flow visualization on a two-phase superfluid helium pipe-flow, performed as a support of LHC cooldown studies, leads to flow pattern characterization. Visu- alization includes stratified and atomized flows. Thanks to the low refractive index contrast between the liquid and its vapor, quantitative results on droplet densities can be obtained even in a multiple scatter- ing regime

    Accelerated Lattice Boltzmann Method For Colloidal Suspensions Rheology And Interface Morphology

    Get PDF
    ABSTRACT ACCELERATED LATTICE BOLTZMANN MODEL FOR COLLOIDAL SUSPENSIONS RHEOLOGY AND INTERFACE MORPHOLOGY by HASSAN FARHAT July 2010 Advisor: Dr. Singh Trilochan Co-Advisor: Dr. Joon Sang Lee Major: Mechanical Engineering Degree: Doctor of Philosophy Colloids are ubiquitous in the food, medical, cosmetic, polymer, water purification and pharmaceutical industries. Colloids thermal, mechanical and storage properties are highly dependent on their interface morphology and their rheological behavior. Numerical methods provide a cheap and reliable virtual laboratory for the study of colloids. However efficiency is a major concern to address when using numerical methods for practical applications. This work introduces the main building-blocks for an improved lattice Boltzmann-based numerical tool geared towards the study of colloidal rheology and interface morphology. The efficiency of the proposed model is enhanced by using recently developed and validated migrating multi-block algorithms for the lattice Boltzmann method (LBM).The migrating multi-block was used to simulate single component, multi-component, multiphase and single component multiphase flows. Results were validated by experimental, numerical and analytical solutions. The contamination of the fluid-fluid interface influences the colloids morphology. This issue was addressed by the introduction of the hybrid LBM for surfactant-covered droplets. The module was used for the simulation of surfactant-covered droplet deformation under shear and uniaxial extensional flows respectively and under buoyancy. Validation with experimental and theoretical results was provided. Colloids are non-Newtonian fluids which exhibit rich rheological behavior. The suppression of coalescence module is the part of the proposed model which facilitates the study of colloids rheology. The model results for the relative viscosity were in agreement with some analytical results. Biological suspensions such as blood are micro-colloids by nature. The study of the blood flow in the microvasculature was heuristically approached by assuming the red blood cells as surfactant covered droplets. The effects of interfacial tension on the flow velocity and the droplet exclusion from the walls in parabolic flows were in qualitative agreement with some experimental and numerical results. The Fahraeus and the Fahraeus-Lindqvist effects were reproduced. The proposed modules could be used separately or in combination for the study of a variety of colloids and biological suspensions problems as this was demonstrated throughout this work
    • 

    corecore