205 research outputs found

    Machine learning based data-driven discovery of nonlinear phase-field dynamics

    Full text link
    One of the main questions regarding complex systems at large scales concerns the effective interactions and driving forces that emerge from the detailed microscopic properties. Coarse-grained models aim to describe complex systems in terms of coarse-scale equations with a reduced number of degrees of freedom. Recent developments in machine learning (ML) algorithms have significantly empowered the discovery process of the governing equations directly from data. However, it remains difficult to discover partial differential equations (PDEs) with high-order derivatives. In this paper, we present new data-driven architectures based on multi-layer perceptron (MLP), convolutional neural network (CNN), and a combination of CNN and long short-term memory (CNN-LSTM) structures for discovering the non-linear equations of motion for phase-field models with non-conserved and conserved order parameters. The well-known Allen--Cahn, Cahn--Hilliard, and the phase-field crystal (PFC) models were used as the test cases. Two conceptually different types of implementations were used: (a) guided by physical intuition (such as local dependence of the derivatives) and (b) in the absence of any physical assumptions (black-box model). We show that not only can we effectively learn the time derivatives of the field in both scenarios, but we can also use the data-driven PDEs to propagate the field in time and achieve results in good agreement with the original PDEs

    On upscaling heat conductivity for a class of industrial problems

    Get PDF
    Calculating effective heat conductivity for a class of industrial problems is discussed. The considered composite materials are glass and metal foams, fibrous materials, and the like, used in isolation or in advanced heat exchangers. These materials are characterized by a very complex internal structure, by low volume fraction of the higher conductive material (glass or metal), and by a large volume fraction of the air. The homogenization theory (when applicable), allows to calculate the effective heat conductivity of composite media by postprocessing the solution of special cell problems for representative elementary volumes (REV). Different formulations of such cell problems are considered and compared here. Furthermore, the size of the REV is studied numerically for some typical materials. Fast algorithms for solving the cell problems for this class of problems, are presented and discussed

    Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane

    Full text link
    We present an overview of pattern formation analysis for an analogue of the Swift-Hohenberg equation posed on the real hyperbolic space of dimension two, which we identify with the Poincar\'e disc D. Different types of patterns are considered: spatially periodic stationary solutions, radial solutions and traveling waves, however there are significant differences in the results with the Euclidean case. We apply equivariant bifurcation theory to the study of spatially periodic solutions on a given lattice of D also called H-planforms in reference with the "planforms" introduced for pattern formation in Euclidean space. We consider in details the case of the regular octagonal lattice and give a complete descriptions of all H-planforms bifurcating in this case. For radial solutions (in geodesic polar coordinates), we present a result of existence for stationary localized radial solutions, which we have adapted from techniques on the Euclidean plane. Finally, we show that unlike the Euclidean case, the Swift-Hohenberg equation in the hyperbolic plane undergoes a Hopf bifurcation to traveling waves which are invariant along horocycles of D and periodic in the "transverse" direction. We highlight our theoretical results with a selection of numerical simulations.Comment: Dedicated to Klaus Kirchg\"assne

    Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations (survey)

    Get PDF
    Analysis and Stochastic

    Deeptime: a Python library for machine learning dynamical models from time series data

    Get PDF
    Generation and analysis of time-series data is relevant to many quantitative fields ranging from economics to fluid mechanics. In the physical sciences, structures such as metastable and coherent sets, slow relaxation processes, collective variables, dominant transition pathways or manifolds and channels of probability flow can be of great importance for understanding and characterizing the kinetic, thermodynamic and mechanistic properties of the system. Deeptime is a general purpose Python library offering various tools to estimate dynamical models based on time-series data including conventional linear learning methods, such as Markov state models (MSMs), Hidden Markov Models and Koopman models, as well as kernel and deep learning approaches such as VAMPnets and deep MSMs. The library is largely compatible with scikit-learn, having a range of Estimator classes for these different models, but in contrast to scikit-learn also provides deep Model classes, e.g. in the case of an MSM, which provide a multitude of analysis methods to compute interesting thermodynamic, kinetic and dynamical quantities, such as free energies, relaxation times and transition paths. The library is designed for ease of use but also easily maintainable and extensible code. In this paper we introduce the main features and structure of the deeptime software. Deeptime can be found under https://deeptime-ml.github.io/

    Dynamics of Patterns

    Get PDF
    This workshop focused on the dynamics of nonlinear waves and spatio-temporal patterns, which arise in functional and partial differential equations. Among the outstanding problems in this area are the dynamical selection of patterns, gaining a theoretical understanding of transient dynamics, the nonlinear stability of patterns in unbounded domains, and the development of efficient numerical techniques to capture specific dynamical effects
    corecore