122 research outputs found

    Fusion of geometric and texture features for finger knuckle surface recognition

    Get PDF
    AbstractHand-based biometrics plays a significant role in establishing security for real-time environments involving human interaction and is found to be more successful in terms of high speed and accuracy. This paper investigates on an integrated approach for personal authentication using Finger Back Knuckle Surface (FBKS) based on two methodologies viz., Angular Geometric Analysis based Feature Extraction Method (AGFEM) and Contourlet Transform based Feature Extraction Method (CTFEM). Based on these methods, this personal authentication system simultaneously extracts shape oriented feature information and textural pattern information of FBKS for authenticating an individual. Furthermore, the proposed geometric and textural analysis methods extract feature information from both proximal phalanx and distal phalanx knuckle regions (FBKS), while the existing works of the literature concentrate only on the features of proximal phalanx knuckle region. The finger joint region found nearer to the tip of the finger is called distal phalanx region of FBKS, which is a unique feature and has greater potentiality toward identification. Extensive experiments conducted using newly created database with 5400 FBKS images and the obtained results infer that the integration of shape oriented features with texture feature information yields excellent accuracy rate of 99.12% with lowest equal error rate of 1.04%

    Patterns Identification of Finger Outer Knuckles by Utilizing Local Directional Number

    Get PDF
    Finger Outer Knuckle (FOK) is a distinctive biometric that has grown in popularity recently. This results from its inborn qualities such as stability, protection, and specific anatomical patterns. Applications for the identification of FOK patterns include forensic investigations, access control systems, and personal identity. In this study, we suggest a method for identifying FOK patterns using Local Directional Number (LDN) codes produced from gradient-based compass masks. For the FOK pattern matching, the suggested method uses two asymmetric masks—Kirsch and Gaussian derivative—to compute the edge response and extract LDN codes. To calculate edge response on the pattern, an asymmetric compass mask made from the Gaussian derivative mask is created by rotating the Kirsch mask by 45 degrees to provide edge response in eight distinct directions. The edge response of each mask and the combination of dominating vector numbers are examined during the LDN code-generating process. A distance metric can be used to compare the LDN code\u27s condensed representation of the FOK pattern to the original for matching purposes. On the Indian Institute of Technology Delhi Finger Knuckle (IITDFK) database, the efficiency of the suggested procedure is assessed. The data show that the suggested strategy is effective, with an Equal Error Rate (EER) of 10.78%. This value performs better than other EER values when compared to different approaches

    Signal processing and machine learning techniques for human verification based on finger textures

    Get PDF
    PhD ThesisIn recent years, Finger Textures (FTs) have attracted considerable attention as potential biometric characteristics. They can provide robust recognition performance as they have various human-speci c features, such as wrinkles and apparent lines distributed along the inner surface of all ngers. The main topic of this thesis is verifying people according to their unique FT patterns by exploiting signal processing and machine learning techniques. A Robust Finger Segmentation (RFS) method is rst proposed to isolate nger images from a hand area. It is able to detect the ngers as objects from a hand image. An e cient adaptive nger segmentation method is also suggested to address the problem of alignment variations in the hand image called the Adaptive and Robust Finger Segmentation (ARFS) method. A new Multi-scale Sobel Angles Local Binary Pattern (MSALBP) feature extraction method is proposed which combines the Sobel direction angles with the Multi-Scale Local Binary Pattern (MSLBP). Moreover, an enhanced method called the Enhanced Local Line Binary Pattern (ELLBP) is designed to e ciently analyse the FT patterns. As a result, a powerful human veri cation scheme based on nger Feature Level Fusion with a Probabilistic Neural Network (FLFPNN) is proposed. A multi-object fusion method, termed the Finger Contribution Fusion Neural Network (FCFNN), combines the contribution scores of the nger objects. The veri cation performances are examined in the case of missing FT areas. Consequently, to overcome nger regions which are poorly imaged a method is suggested to salvage missing FT elements by exploiting the information embedded within the trained Probabilistic Neural Network (PNN). Finally, a novel method to produce a Receiver Operating Characteristic (ROC) curve from a PNN is suggested. Furthermore, additional development to this method is applied to generate the ROC graph from the FCFNN. Three databases are employed for evaluation: The Hong Kong Polytechnic University Contact-free 3D/2D (PolyU3D2D), Indian Institute of Technology (IIT) Delhi and Spectral 460nm (S460) from the CASIA Multi-Spectral (CASIAMS) databases. Comparative simulation studies con rm the e ciency of the proposed methods for human veri cation. The main advantage of both segmentation approaches, the RFS and ARFS, is that they can collect all the FT features. The best results have been benchmarked for the ELLBP feature extraction with the FCFNN, where the best Equal Error Rate (EER) values for the three databases PolyU3D2D, IIT Delhi and CASIAMS (S460) have been achieved 0.11%, 1.35% and 0%, respectively. The proposed salvage approach for the missing feature elements has the capability to enhance the veri cation performance for the FLFPNN. Moreover, ROC graphs have been successively established from the PNN and FCFNN.the ministry of higher education and scientific research in Iraq (MOHESR); the Technical college of Mosul; the Iraqi Cultural Attach e; the active people in the MOHESR, who strongly supported Iraqi students

    Multi-modal palm-print and hand-vein biometric recognition at sensor level fusion

    Get PDF
    When it is important to authenticate a person based on his or her biometric qualities, most systems use a single modality (e.g. fingerprint or palm print) for further analysis at higher levels. Rather than using higher levels, this research recommends using two biometric features at the sensor level. The Log-Gabor filter is used to extract features and, as a result, recognize the pattern, because the data acquired from images is sampled at various spacing. Using the two fused modalities, the suggested system attained greater accuracy. Principal component analysis (PCA) was performed to reduce the dimensionality of the data. To get the optimum performance between the two classifiers, fusion was performed at the sensor level utilizing different classifiers, including K-nearest neighbors (K-NN) and support vector machines (SVMs). The technology collects palm prints and veins from sensors and combines them into consolidated images that take up less disk space. The amount of memory needed to store such photos has been lowered. The amount of memory is determined by the number of modalities fused

    A Review Of Multilevel Multibiometric Fusion System

    Get PDF
    Biometric systems allow automatic person recognition and authenticate based on the physical or behavioral characteristic. In recent years, researchers have paid close attention to the design of efficient multi-modal biometric systems due to their ability to withstand spoof attacks. Sometimes single biometric traits fail to extract relevant information for verifying the identity of a person. Therefore, combining multiple modalities, enhanced performance reliability could be achieved. If the security level increases then multi-level fusion techniques are used. This paper discusses the many fusion levels: algorithms, level of fusion, methods used for integrating the multiple verifiers and their applications

    Modified Firefly Optimization with Deep Learning based Multimodal Biometric Verification Model

    Get PDF
    Biometric security has become a main concern in the data security field. Over the years, initiatives in the biometrics field had an increasing growth rate. The multimodal biometric method with greater recognition and precision rate for smart cities remains to be a challenge. By comparison, made with the single biometric recognition, we considered the multimodal biometric recognition related to finger vein and fingerprint since it has high security, accurate recognition, and convenient sample collection. This article presents a Modified Firefly Optimization with Deep Learning based Multimodal Biometric Verification (MFFODL-MBV) model. The presented MFFODL-MBV technique performs biometric verification using multiple biometrics such as fingerprint, DNA, and microarray. In the presented MFFODL-MBV technique, EfficientNet model is employed for feature extraction. For biometric recognition, MFFO algorithm with long short-term memory (LSTM) model is applied with MFFO algorithm as hyperparameter optimizer. To ensure the improved outcomes of the MFFODL-MBV approach, a widespread experimental analysis was performed. The wide-ranging experimental analysis reported improvements in the MFFODL-MBV technique over other models

    Score Fusion Using Hybrid Bacterial Foraging Optimization And Particle Swarm Optimization (Bfo-Pso) For Hand-Based Multimodal Biometrics

    Get PDF
    In recent times of biometric authentication, the influence of swarm intelligence algorithms role-played in enhancing the performance accuracy to a greater extent. Most researches related to Swarm Intelligence (SI) algorithms have done on the particular, due to the need to integrate more than one SI algorithm for better results. Therefore, this research is focused on the hand-based multimodal biometric score fusion which incorporates the scores of hand-based multimodalities and the optimal weights using Hybrid Bacterial Foraging - Particle Swarm Optimization (HBF-PSO) algorithm
    corecore