11,854 research outputs found

    A Hierarchal Planning Framework for AUV Mission Management in a Spatio-Temporal Varying Ocean

    Full text link
    The purpose of this paper is to provide a hierarchical dynamic mission planning framework for a single autonomous underwater vehicle (AUV) to accomplish task-assign process in a limited time interval while operating in an uncertain undersea environment, where spatio-temporal variability of the operating field is taken into account. To this end, a high level reactive mission planner and a low level motion planning system are constructed. The high level system is responsible for task priority assignment and guiding the vehicle toward a target of interest considering on-time termination of the mission. The lower layer is in charge of generating optimal trajectories based on sequence of tasks and dynamicity of operating terrain. The mission planner is able to reactively re-arrange the tasks based on mission/terrain updates while the low level planner is capable of coping unexpected changes of the terrain by correcting the old path and re-generating a new trajectory. As a result, the vehicle is able to undertake the maximum number of tasks with certain degree of maneuverability having situational awareness of the operating field. The computational engine of the mentioned framework is based on the biogeography based optimization (BBO) algorithm that is capable of providing efficient solutions. To evaluate the performance of the proposed framework, firstly, a realistic model of undersea environment is provided based on realistic map data, and then several scenarios, treated as real experiments, are designed through the simulation study. Additionally, to show the robustness and reliability of the framework, Monte-Carlo simulation is carried out and statistical analysis is performed. The results of simulations indicate the significant potential of the two-level hierarchical mission planning system in mission success and its applicability for real-time implementation

    Distributed allocation of mobile sensing swarms in gyre flows

    Get PDF
    We address the synthesis of distributed control policies to enable a swarm of homogeneous mobile sensors to maintain a desired spatial distribution in a geophysical flow environment, or workspace. In this article, we assume the mobile sensors (or robots) have a "map" of the environment denoting the locations of the Lagrangian coherent structures or LCS boundaries. Based on this information, we design agent-level hybrid control policies that leverage the surrounding fluid dynamics and inherent environmental noise to enable the team to maintain a desired distribution in the workspace. We establish the stability properties of the ensemble dynamics of the distributed control policies. Since realistic quasi-geostrophic ocean models predict double-gyre flow solutions, we use a wind-driven multi-gyre flow model to verify the feasibility of the proposed distributed control strategy and compare the proposed control strategy with a baseline deterministic allocation strategy. Lastly, we validate the control strategy using actual flow data obtained by our coherent structure experimental testbed.Comment: 10 pages, 14 Figures, added reference

    CONTROL AUTOMATION OF MARITIME UNMANNED COMPLEX WITH A GROUP OF AUTONOMOUS UNDERWATER VEHICLES

    Get PDF
    It is expedient to perform underwater search operations on large water areas using a group of autonomous self-propelled underwater vehicles. However, with a large distance to the search areas, the sea transition (from one point to the other) of the underwater vehicles requires high energy costs. This leads to the necessity to use heavy-duty underwater vehicles, which determines the high cost of the search operation. The transport of underwater vehicles is proposed to be carried out with an unmanned surface vessel, equipped with actuators for the automatic release of a group of vehicles under water and receiving on board after the end of the underwater mission. The maritime unmanned complex consisting of an unmanned surface vessel and a group of autonomous underwater vehicles on its board forms a new type of marine robotics, the complete automation of which is an actual scientific and technical task. For its implementation, the underlying (basic) automation technology of the marine search underwater mission has been developed as the theoretical basis for the development of the generalized structure of the complex automatic control system. Ten implementation stages of the underlying technology are formulated and the analysis of their automation features with the use of modern methods in the field of marine robotics is performed. Automation of the underlying technology stages involves the transfer of the vessel to a given water area, the automatic release (launch) of the group of underwater vehicles and their coordinated motion to the search area, the search operations and the return to the unmanned surface vessel, as well as the recovery of the vessel to the base. The generalized requirements for automatic control systems constituting the maritime unmanned complex at each stage of its functioning are provided. The spiral trajectory of waiting for the motion of the underwater vehicles at the group formation stages, for the search operation execution and after its completion, is proposed. For the spatial motion of the autonomous underwater vehicle as an agent of the group, the automatic control system was improved by introducing the blocks of the “Navigation Situation Model” and the “Navigation Threat Identifier, which make it impossible for emergency collision with the neighboring underwater vehicles of the group and disintegrate the group due to the data communication loss between them
    corecore